Advertisement

Research on Information Integration Method of Agricultural Products Producing and Managing Based on Knowledge Graph

  • Xiang Sun
  • Huarui WuEmail author
  • Peng Hao
  • Qingxue Li
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 545)

Abstract

In order to improve the integration and access efficiency of agricultural information, this paper propose an agricultural information integration framework based on knowledge graph. A knowledge graph of agricultural products producing and managing was constructed, covering the basic process of “Planting - farming - processing - quality inspection - warehousing - Transportation - Sales” and realizing the storage, mapping and inquiry of knowledge graph. Improves the method of mapping data linkage based on database mapping relation, and realizes the transformation of elements from database to knowledge graph elements. Map data link method of database based on mapping relations, realize the conversion of database elements to the knowledge graph elements, the iterative discovery of relation and pattern in text information is realized by means of weak supervised machine learning method. This method integrates the application in the Green-Cloud-Grid platform, and improves the efficiency of information source integration, correlation analysis and mining utilization under the platform.

Keywords

Knowledge graph Agricultural products producing and managing Information integration Weak supervision 

Notes

Acknowledgements

This work was supported by Beijing Natural Science Foundation (4172026), Natural Science Foundation of China (61771058), Innovation Capability Project of Beijing Academy of Agriculture and Forestry (KJCX20170706), and Beijing Natural Science Foundation Key Program (4151001).

References

  1. 1.
    Liu, J., Liu, B., Shen, Y.: The application of the knowledge mapping based on agricultural information services. Software 3, 26–30 (2015)Google Scholar
  2. 2.
    Xiao, H., Qiu, T., Zhou, P.: Integration of heterogeneous agriculture information system based on interoperation of domain ontology. In: 2nd International Conference on Agro-Geoinformatics IEEE, pp. 476–480. Fairfax (2013)Google Scholar
  3. 3.
    Zhao, M., Du, Y., Du, H., Zhang, J., Wang, H., Chen, Y.: Research on ontology non-taxonomic relations extraction in plant domain knowledge graph construction. Trans. Chin. Soc. Agric. Mach. 47(9), 278–284 (2016)Google Scholar
  4. 4.
    Serra, I., Girardi, R., Novais, P.: Evaluating techniques for learning non-taxonomic relationships of ontologies from text. Expert Syst. Appl. 41(11), 5201–5211 (2014)CrossRefGoogle Scholar
  5. 5.
    Jin, G., Lü, F., Xiang, Z.: Enterprise information integration based on knowledge graph and semantic web technology. J. Southeast Univ. (Nat. Sci. Ed.) 44(2), 250–255 (2014)Google Scholar
  6. 6.
    Huang, F., Wu, H.: An automatic generating method of adaptable web information extraction rule. J. Guangxi Norm. Univ. 28(1), 127–130 (2010)Google Scholar
  7. 7.
    Huai, B.-X., Bao, T.-F., Zhu, H.-S., Liu, Q.: Topic modeling approach to named entity linking. J. Softw. 25(9), 2076–2087 (2014)Google Scholar
  8. 8.
    Jia, Z., Yang, Y., He, D., Liu, S., Yin, H.: Attribute and attribute value extracted from Chinese online encyclopedia. Acta Scientiarum Naturalium Universitatis Pekinensis 50(1), 41–47 (2014)Google Scholar
  9. 9.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999).  https://doi.org/10.1007/10704656_11CrossRefGoogle Scholar
  10. 10.
    Xu, J., Zhang, Z., Wu, Z.: Review on techniques of entity relation extraction. New Technol. Libr. Inf. Serv. 24(8), 18–23 (2008)Google Scholar
  11. 11.
    Yi, G., Li, Z., Yu, Z., Zhang, Z.: Extraction and relation prediction of domain ontology concept instance, attribute and attribute value. J. Nanjing Univ. (Nat. Sci.) 48(4), 383–389 (2012)Google Scholar
  12. 12.
    Albitar, S., Fournier, S., Espinasse, B.: An effective TF/IDF-based text-to-text semantic similarity measure for text classification. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786, pp. 105–114. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11749-2_8CrossRefGoogle Scholar
  13. 13.
    Bizer, C., Lehmann, J., Kobilarov, G., et al.: DBpedia – a crystallization point for the web of data. Web Semant.: Sci., Serv. Agents World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  14. 14.
    Hu, F., Shao, Z., Ruan, T.: Self-supervised Chinese ontology learning from online encyclopedias. Sci. World J. 2(11), 1–13 (2014)Google Scholar
  15. 15.
    Guo, J.Y., Li, Z., Yu, Z.T., et al.: Extraction and relation prediction of domain ontology concept instance, attribute and attribute value. J. Nanjing Univ. 48(4), 383–389 (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Xiang Sun
    • 1
    • 2
    • 3
  • Huarui Wu
    • 1
    • 2
    • 3
    Email author
  • Peng Hao
    • 1
    • 2
    • 3
  • Qingxue Li
    • 1
    • 2
    • 3
  1. 1.Beijing Research Center for Information Technology in AgricultureBeijing Academy of Agriculture and Forestry SciencesBeijingPeople’s Republic of China
  2. 2.National Engineering Research Center for Information Technology in AgricultureBeijingPeople’s Republic of China
  3. 3.Key Laboratory for Information Technologies in Agriculture, Ministry of AgricultureBeijingPeople’s Republic of China

Personalised recommendations