Advertisement

Chlorophyll Fluorescence Measurement: A New Method to Test the Effect of Two Adjuvants on the Efficacy of Topramezone on Weeds

  • Jinwei Zhang
  • Ortrud Jäck
  • Alexander Menegat
  • Gen Li
  • Xiu WangEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 545)

Abstract

To test the effect of adjuvant on the efficacy of herbicides in a fast and non-destructive way is very helpful for selecting a right spray adjuvant for herbicide, which is an important strategy to enhance the efficacy of herbicides, reduce application dose, and enhance environmental safety. Experiments were conducted in the laboratory and greenhouse to study the effect of 2 adjuvants - Methylated seed oil (MSO) and organosilicone on the efficacy of topramezone on grass weed giant foxtail (Setaria faberi Herrm.) and broadleaved weed velvetleaf (Abutilon theophrasti Medik.) using weed leaves chlorophyll fluorescence measurement and whole plant biomass test. The results indicated that the top leaf maximum quantum efficiency (Fv/Fm) of two weeds treated by herbicide mixed with MSO adjuvant was significantly lower than that of treated by herbicide alone from the 2–3 days after treatment, while the difference between treatments of herbicide mixed with organosilicone adjuvant and herbicide applied alone was not significant. Results of the whole-plant pot tests showed biomass of the treatment of topramezone mixed with MSO was significantly lower than that of herbicide applied alone. This is similar to the result of chlorophyll fluorescence test. Chlorophyll fluorescence measurement has proven to be an attractive tool for studying the effect of the adjuvants on the efficacy of herbicide.

Keywords

Weed Chlorophyll fluorescence test Adjuvant Methylated seed oil (MSO) Fv/fm 

Notes

Acknowledgements

This research was supported the Key Project of Tianjin Applied Basic and Frontier Technology Research (No. 14JCZDJC34300) and the Postdoctoral Science Foundation (2018M631382).

References

  1. 1.
    Foy, C.L.: Adjuvants: terminology, classification, and mode of action. In: Chow, P.N.P., Grant, C.A, Hinshalwood, A.M. (eds.) Adjuvants and agrochemicals, pp. 1–17. CRC Press (1989)Google Scholar
  2. 2.
    Stephenson, G.R., Ferris, I.G., Holland, P.T., Nordberg, M.: Glossary of terms relating to pesticides (IUPAC Recommendations 2006). Pure Appl. Chem. 78, 2075–2154 (2006)CrossRefGoogle Scholar
  3. 3.
    Bukun, B., Lindenmayer, R.B., Nissen, S.J., Westra, P., Shaner, D.L., Brunk, G.: Absorption and Translocation of aminocyclopyrachlor and aminocyclopyrachlor-methyl ester in canada thistle (Cirsium arvense). Weed Sci. 58, 96–102 (2010)CrossRefGoogle Scholar
  4. 4.
    Pester, T.A., Nissen, S.J., Westra, P.: Absorption, translocation, and metabolism of imazamox in jointed goatgrass and feralrye. Weed Sci. 49, 607–612 (2001)CrossRefGoogle Scholar
  5. 5.
    Sharma, S.D., Singh, M.: Optimizing foliar activity of glyphosate on Bidens frondosa and Panicum maximum with different adjuvant types. Weed Res. 40, 523–533 (2000)CrossRefGoogle Scholar
  6. 6.
    Young, B.G., Hart, S.E.: Optimizing foliar activity of isoxaflutole on giant foxtail (Seteria faberi) with various adjuvants. Weed Sci. 46, 397–402 (1998)Google Scholar
  7. 7.
    Knoche, M.: Organosilicone surfactant performance in agricultural spray application: a review. Weed Res. 34, 221–239 (1994)CrossRefGoogle Scholar
  8. 8.
    Bollman, J., Boerboom, C., Becker, R., Fritz, V.: New weed control options for sweet corn. In: Proceedings of the 2007, pp. 216–221 (2007)Google Scholar
  9. 9.
    Soltani, N., Sikkema, P.H., Zandstra, J., O’Sullivan, J., Robinson, D.E.: Response of eight sweet corn (Zea mays L.) hybrids to topramezone. Hort Sci. 42, 110–112 (2007)Google Scholar
  10. 10.
    Gitsopoulos, T.K., Melidis, V., Evgenidis, G.: Response of maize (Zea mays L.) to post-emergence applications of topramezone. Crop Prot. 29, 1091–1093 (2010)CrossRefGoogle Scholar
  11. 11.
    Evans, S.P., Knezevic, S.Z., Shapiro, C., Lindquist, J.L.: Influence of nitrogen level and duration of weed interference on corn growth and development. Weed Sci. 51, 546–556 (2003)CrossRefGoogle Scholar
  12. 12.
    Knezevic, S.Z., Streibig, J.C., Ritz, C.: Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21(3), 840–848 (2007)CrossRefGoogle Scholar
  13. 13.
    Streibig, J.C., et al.: Sensor-based assessment of herbicide effects. Weed Res. 54(3), 223–233 (2014)CrossRefGoogle Scholar
  14. 14.
    Lowe, A., Harrison, N., French, A.P.: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13(1), 80 (2017)CrossRefGoogle Scholar
  15. 15.
    Korres, N.E., Froud-Williams, R.J., Moss, S.R.: Chlorophyll fluorescence technique as a rapid diagnostic test of the effects of the photosynthetic inhibitor chlorotoluron on two winter wheat cultivars. Ann. Appl. Biol. 143, 53–56 (2003)CrossRefGoogle Scholar
  16. 16.
    Abbaspoor, M., Streibig, J.C.: Monitoring the efficacy and metabolism of phenylcarbamates in sugar beet and black nightshade by chlorophyll fluorescence. Pest Manag. Sci. 585, 576–585 (2007)CrossRefGoogle Scholar
  17. 17.
    Schreiber, U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou, G., Govindjee, F. (eds.) Chlorophyll Fluorescence: A Signature of Photosynthesis, pp. 279–319. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  18. 18.
    Kaiser, Y.I., Menegat, A., Gerhards, R.: Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 53, 399–406 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, P., Peteinatos, G., Li, H., Gerhards, R.: Rapid in-season detection of herbicide resistant Alopecurus myosuroides using a mobile fluorescence imaging sensor. Crop Prot. 89, 170–177 (2016)CrossRefGoogle Scholar
  20. 20.
    Li, H., Wang, P., Weber, J.F., Gerhards, R.: Early identification of herbicide stress in soybean (Glycine max (L.) Merr.) Using chlorophyll fluorescence imaging technology. Sensors 18(1), 21 (2017)CrossRefGoogle Scholar
  21. 21.
    Zollinger, R.: Optimizing herbicide performance through adjuvants: resolving misconception and confusion. In: Proceeding of the 2010 Wisconsin Crop Management Conference, vol. 49, pp. 39–45 (2010)Google Scholar
  22. 22.
    Zhang, J., Jaeck, O., Menegat, A., Zhang, Z., Gerhards, R., Ni, H.: The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds. PLoS ONE 8, e74280 (2013)CrossRefGoogle Scholar
  23. 23.
    Buick, R.D., Buchan, G.D., Field, R.J.: The role of surface tension of spreading droplets in absorption of a herbicide formulation via leaf stomata. Pestic. Sci. 38, 227–235 (1993)CrossRefGoogle Scholar
  24. 24.
    Stevens, P.J., Gaskin, R.E., Hong, S.O., Zabkiewicz, J.A.: Contributions of stomatal infiltration and cuticular penetration to enhancements of foliar uptake by surfactants. Pestic. Sci. 33, 371–382 (1991)CrossRefGoogle Scholar
  25. 25.
    Christensen, M.G., Teicher, H.B., Streibig, J.C.: Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag. Sci. 59, 1303–1310 (2003)CrossRefGoogle Scholar
  26. 26.
    Kirkwood, R.C., Hetherington, R., Reynolds, T.L., Marshall, G.: Absorption, localisation, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manag. Sci. 56, 359–367 (2000)CrossRefGoogle Scholar
  27. 27.
    Haefs, R., Schmitz-Eiberger, M., Mainx, H.G., Mittelstaedt, W., Noga, G.: Studies on a new group of biodegradable surfactants for glyphosate. Pest Manag. Sci. 58, 825–833 (2002)CrossRefGoogle Scholar
  28. 28.
    Klem, K., et al.: Comparison of chlorophyll fluorescence and whole-plant bioassays of isoproturon. Weed Res. 42, 335–341 (2002)CrossRefGoogle Scholar
  29. 29.
    Percival, M.P., Blowers, M.H., Green, J.W., Baker, N.R.: Chlorophyll fluorescence–a non-invasive technique for rapid investigation of the effects of adjuvants on herbicide and plant growth regulator uptake by leaves. In: Foy, C.F. (ed.) Adjuvants for Agrichemicals, pp. 187–193. CRC Press, Boca Raton (1992)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Jinwei Zhang
    • 1
    • 2
  • Ortrud Jäck
    • 3
  • Alexander Menegat
    • 3
  • Gen Li
    • 4
  • Xiu Wang
    • 5
    Email author
  1. 1.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Tianjin Institute of Plant ProtectionTianjinChina
  3. 3.Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Shanghai NCH Nanbao Biotechnology Corporation Ltd.ShanghaiChina
  5. 5.National Engineering Research Center of Information Technology for AgricultureBeijingChina

Personalised recommendations