Advertisement

Interactive Evolution of Swarms for the Visualisation of Consumptions

  • Catarina MaçãsEmail author
  • Nuno Lourenço
  • Penousal Machado
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 265)

Abstract

Information Visualisation studies how visual representations can help understanding hidden patterns in large amounts of data. The produced visual artefacts should have both functional and aesthetic dimensions to make the visualisation appealing to the user. However, in the Data Aesthetics field, the process of creation of visualisations is more concerned with aesthetics. Our goal for this project is to develop a framework to explore the aesthetic dimension of a functional visualisation model characterised by a series of parameters, which can make the visualisation more functional or more aesthetically appealing. In concrete, we propose a framework based on Interactive Evolutionary Computation (iec) to evolve the parameterisation of the visualisation model, enabling the user to explore new possibilities and to create different aesthetics over the data. Our case study will be a dataset with the consumption patterns of the Portuguese people in one retail company. The developed system is able to create a wide diversity of emergent visual artefacts that can be intriguing and aesthetically appealing for the user.

Keywords

Data aesthetics Genetic algorithms Evolutionary computation Swarm systems Visualisation 

Notes

Acknowledgements

The first author is funded by Fundação para a Ciência e Tecnologia (FCT), Portugal, under the grant SFRH/BD/129481/2017.

References

  1. 1.
    Manovich, L.: Information and form (2000). http://manovich.net/index.php/projects/information-and-form
  2. 2.
    Moere, A.V.: Aesthetic data visualization as a resource for educating creative design. In: Dong, A., Moere, A.V., Gero, J.S. (eds.) Computer-Aided Architectural Design Futures, CAADFutures 2007, pp. 71–84. Springer, Dodretch (2007).  https://doi.org/10.1007/978-1-4020-6528-6_6CrossRefGoogle Scholar
  3. 3.
    Maçãs, C., Cruz, P., Martins, P., Machado, P.: Swarm systems in the visualization of consumption patterns. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, 25–31 July 2015, Buenos Aires, Argentina, pp. 2466–2472. AAAI Press (2015)Google Scholar
  4. 4.
    Jones, D.: Swarm aesthetics: a critical appraisal of swarming structures in art practice. Master’s thesis, MA Sonic Arts (2007)Google Scholar
  5. 5.
    Maçãs, C., Cruz, P., Polisciuc, E., Amaro, H., Machado, P.: ISO-edges for the geovisualization of consumptions. In: Braz, J., Kerren, A., Linsen, L. (eds.) IVAPP 2016 - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 220–227. SciTePress (2016)Google Scholar
  6. 6.
    Polisciuc, E., et al.: Arc and swarm-based representations of customer’s flows among supermarkets. In: Braz, J., Kerren, A., Linsen, L. (eds.) IVAPP 2015 - Proceedings of the 6th International Conference on Information Visualization Theory and Applications, 11–14 March 2015, Berlin, Germany, pp. 300–306. SciTePress (2015)Google Scholar
  7. 7.
    Polisciuc, E., Maçãs, C., Assunção, F., Machado, P.: Hexagonal gridded maps and information layers: a novel approach for the exploration and analysis of retail data. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 6:1–6:8. ACM (2016)Google Scholar
  8. 8.
    Polisciuc, E., Cruz, P., Maçãs, C., Amaro, H., Machado, P.: Flow map of products transported among warehouses and supermarkets. In: Braz, J., Kerren, A., Linsen, L. (eds.) Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 2, pp. 177–186. SciTePress (2016)Google Scholar
  9. 9.
    Maçãs, C., et al.: Time-series application on big data - visualization of consumption in supermarkets. In: Braz, J., Kerren, A., Linsen, L. (eds.) IVAPP 2015 - Proceedings of the 6th International Conference on Information Visualization Theory and Applications, 11–14 March 2015, Berlin, Germany, pp. 239–246. SciTePress (2015)Google Scholar
  10. 10.
    Maçãs, C., Machado, P.: The rhythm of consumptions. In: Expressive 2016 - Proceedings of the Joint Symposium Expressive 2016, co-located with the Eurographics 2016. ACM (2016)Google Scholar
  11. 11.
    Moere, A.V., Lau, A.: In-formation flocking: an approach to data visualization using multi-agent formation behavior. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) Australian Conference on Artificial Life, ACAL 2007. LNCS, vol. 4828, pp. 292–304. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76931-6_26CrossRefGoogle Scholar
  12. 12.
    Ogawa, M., Ma, K.L.: code\(\_\)swarm: a design study in organic software visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1097–1104 (2009)CrossRefGoogle Scholar
  13. 13.
    Kamvar, S.D., Harris, J.: We feel fine and searching the emotional web. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 117–126. ACM (2011)Google Scholar
  14. 14.
    Bornhofen, S., Gardeux, V., Machizaud, A.: From swarm art toward ecosystem art. Int. J. Swarm Intell. Res. (IJSIR) 3(3), 1–18 (2012)CrossRefGoogle Scholar
  15. 15.
    Greenfield, G., Machado, P.: Swarm art: Curator’s introduction. Leonardo 47(1), 5–7 (2014)CrossRefGoogle Scholar
  16. 16.
    Shiffman, D.: Swarm (2004). http://shiffman.net/projects/swarm/
  17. 17.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS, vol. 53. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-662-05094-1CrossRefzbMATHGoogle Scholar
  18. 18.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)Google Scholar
  19. 19.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-44874-8CrossRefzbMATHGoogle Scholar
  20. 20.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Catarina Maçãs
    • 1
    Email author
  • Nuno Lourenço
    • 1
  • Penousal Machado
    • 1
  1. 1.CISUC - Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations