Advertisement

Ecology: Ecosystems and Biodiversity

  • Erwin BeckEmail author
Chapter

Abstract

Using ecosystems as examples, this chapter engages with the emergence of understanding life by producing and assembling modules of knowledge, and finally linking them to create a holistic picture of the entire system. Ecosystems as theoretical units of arbitrary size are understood to consist of abiotic and biotic components on the one hand and of the interactions of the components on the other. The latter is extraordinarily complex but generates functionality in the system as a basis of its properties and services. Functionality can be further partitioned into processes, such as flow of energy and matter, resulting from food chains or webs. Functional diversity is considered as a composite variable that includes all significant physiological information as processes and/or traits, weighted by their abundances in a community whose composition has been filtered by environmental conditions. Two types of ecological experiments can be used to unravel the significance of the interactions of species in a functional community: The analytical approach by intentional disturbance, i.e., a change of an external condition, or the synthetic approach by using artificial species compositions in an otherwise natural environment. Both approaches allow the characterization of functional modules in an ecosystem. Due to the complexity of even simple appearing modules like biomass production, models are required for a comprehensive insight. The more so linking modules to achieve a higher level of integration is unthinkable without comprehensive synthesis models. Examples are presented for each step in the emerging knowledge about, and understanding of ecosystems.

References

  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–371CrossRefGoogle Scholar
  2. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270CrossRefGoogle Scholar
  3. Allan E, Jenkins T, Fergus AJF, Roscher C, Fischer M, Petermann J, Weisser WW, Schmid B (2013) Experimental plant communities develop phylogenetically overdispersed abundance distributions during assembly. Ecology 94:465–477CrossRefGoogle Scholar
  4. Baasch A, Kirmer A, Tischew S (2012) Nine years of vegetation development in a postmining site: effects of spontaneous and assisted site recovery. J Appl Ecol 49:251–260CrossRefGoogle Scholar
  5. Bataillon T, Galtier N, Bernard A, Cryer N, Faivre N, Santoni S, Severac D, Mikkelsen TN, Larsen KS, Beier C, Sørensen JG, Holmstrup M, Ehlers BK (2016) A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate. Glob Change Biol 22(7):2370–2379.  https://doi.org/10.1111/gcb.13293 Epub 2016 Apr 24CrossRefGoogle Scholar
  6. Beck E, Bendix J, Silva B, Rollenbeck R, Lehnert L, Hamer U, Potthast K, Tischer A, Roos K (2013) Future provisioning services: repasturisation of abandoned pastures, problems, and pasture management. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, Heidelberg. Ecol Stud 221:355–370Google Scholar
  7. Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012) Precipitation manipulation experiments—challenges and recommendations for the future. Ecol Lett 15(8):899–911.  https://doi.org/10.1111/j.1461-0248.2012.01793.x Epub 2012 May 4CrossRefPubMedGoogle Scholar
  8. Bendix J, Silva B, Roos K, Göttlicher DO, Rollenbeck R, Nauß T, Beck E (2010) Model parameterization to simulate and compare the PAR absorption potential of two competing plant species. Int J Biometeorol 54:283–295CrossRefGoogle Scholar
  9. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449CrossRefGoogle Scholar
  10. Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16(2)CrossRefGoogle Scholar
  11. Chapin FS III, Walker LR, Fastie C, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175CrossRefGoogle Scholar
  12. Curatola Fernández G, Silva B, Gawlik J, Thies B, Bendix J (2013) Bracken fern frond status classification in the Andes of Southern Ecuador: combining multispectral satellite data and field spectroscopy. Int J Remote Sens 34:7020–7037CrossRefGoogle Scholar
  13. Dai Y, Dickinson RE, Wang Y-P (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17:2281–2299CrossRefGoogle Scholar
  14. Diaz S, Marcelo C, Fernando C (1998) Plant functional traits and environmental filters at a regional scale. J Veget Sci 9:113–122CrossRefGoogle Scholar
  15. Ebeling A, Klein AM, Tscharntke T (2011) Plant-flower visitor interaction webs: temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic Appl Ecol 12:300–309CrossRefGoogle Scholar
  16. Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais ACW, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496CrossRefGoogle Scholar
  17. Garcia MO, Ovasapyan T, Greas M, Treseder KK (2008) Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil 303:301–310.  https://doi.org/10.1007/s11104-007-9509-9CrossRefGoogle Scholar
  18. Goettlicher D, Obregón A, Homeier J, Rollenbeck R, Nauß T, Bendix J (2009) Land cover classification in the Andes of southern Ecuador using landsat ETM+ data as a basis for SVAT modeling. Int J Remote Sens 30:1867–1886CrossRefGoogle Scholar
  19. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MRF, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change.  https://doi.org/10.1038/nclimate1329CrossRefGoogle Scholar
  20. Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. Trop Ecol 51(2):1–25Google Scholar
  21. Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO et al (2012) Tropical Andean Forests are highly susceptible to nutrient inputs—rapid effects of experimental N and P addition to an Ecuadorian Montane Forest. PLoS ONE 7(10):e47128.  https://doi.org/10.1371/journal.pone.0047128CrossRefPubMedPubMedCentralGoogle Scholar
  22. Homeier J, Leuschner C, Bräuning A, Cumbicus NL, Hertel D, Martinson GO, Spannl S, Veldkamp E (2013) Effects of nutrient addition on the productivity of mountain forests and implications for the carbon cycle. In: Bendix J et al (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecol Stud 221:315–329Google Scholar
  23. Kattge J, Diaz S, Lavoral S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935CrossRefGoogle Scholar
  24. Keddy P (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164CrossRefGoogle Scholar
  25. Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, Boit A, Joppa LN, Lafferty KD, Williams RJ, Martinez ND, Menge BA, Blanchette CA, Iles AC, Brose U (2012) More than a meal… integrating non-feeding interactions into food webs. Ecol Lett 15:291–300CrossRefGoogle Scholar
  26. Knoke T, Bendix J, Pohle P, Hamer U, Hildebrandt P, Roos K, Gerique A, Lopez Sandoval M, Breuer L, Tischer A, Silva B, Baltazar C, Aguirre N, Castro LM, Windhorst D, Weber M, Stimm B, Gunter S, Palomeque X, Mora J, Mosandl R, Beck E (2014) Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat Comm 5.  https://doi.org/10.1038/ncomms6612
  27. Lavorel S, Garnier E (2001) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  28. Lawrence DM, Fisher R (2013) The community land model philosophy: model development and science applications. iLEAPS Newslett 13:16–19Google Scholar
  29. Neuschulz EL (2016) Plant-animal interactions in tropical mountain forests. In: Bogner F, Bendix J, Beck E (eds) Biodiversity hotspot tropical mountain rainforest. NCI Foundation, Loja, Ecuador, pp 98–103. ISBN 978-9942-14-538-3Google Scholar
  30. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203CrossRefGoogle Scholar
  31. Odum HT (1957) Trophic structures and productivity of Silver Springs, Florida. Ecol Monogr 27:55–112CrossRefGoogle Scholar
  32. Oelmann Y, Buchmann N, Gleixner G, Habekost M, Roscher C, Rosenkranz S, Schulze E-D, Steinbeiss S, Temperton VM, Weigelt A, Weisser WW, Wilcke W (2011) Plant diversity effects on above- and belowground N pools in temperate grassland ecosystems: development in the first five years after establishment. Glob Biogeochem Cycles 25(2).  https://doi.org/10.1029/2010gb003869CrossRefGoogle Scholar
  33. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze E-D, Weisser WW (2007) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729CrossRefGoogle Scholar
  34. Oleson KW, Lawrence DM et 24 al (2013) Technical description of version 4.5 of the community land model (CLM). NCAR Earth Systems Laboratory, Climate and Global Dynamics Division. ISSN Print Edition 2153-2397, ISSN Electronic Edition 2153-2400Google Scholar
  35. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado R, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336(6079):353–355.  https://doi.org/10.1126/science.1219033CrossRefGoogle Scholar
  36. Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze E-D, Schumacher J, Schwichtenberg G, Soussana J-F, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grassland. PLoS ONE 5:e13382CrossRefGoogle Scholar
  37. Ravenscroft CH, Whitlock R, Fridley JD (2015) Rapid genetic divergence in response to 15 years of simulated climate change. Glob Change Biol 21(11):4165–4176.  https://doi.org/10.1111/gcb.12966PMCID:PMC4975715CrossRefGoogle Scholar
  38. Riebesell U, Czerny J, von Bröckel K, Boxhammer T, Büdenbender J, Deckelnick M, Fischer M, Hoffmann D, Krug S, Lentz U, Ludwig A, Muche R, Schulz KG (2013) Technical note: a mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences (BG) 10:1835–1847.  https://doi.org/10.5194/bg-10-1835-2013CrossRefGoogle Scholar
  39. Roos K, Rödel HG, Beck E (2011) Short- and long-term effects of weed control on pastures infested with Pteridium arachnoideum and an attempt to regenerate abandoned pastures in South Ecuador. Weed Res 51:165–176.  https://doi.org/10.1111/j.1365-3189,2010.00833.xCrossRefGoogle Scholar
  40. Roscher C, Temperton VM, Scherer-Lorenzen M, Schmitz M, Schumacher J, Schmid B, Buchmann N, Weisser WW, Schulze E-D (2005) Overyielding in experimental grassland communities—irrespective of species pool or spatial scale. Ecol Lett 8:419–429CrossRefGoogle Scholar
  41. Rzanny M, Kuu A, Voigt W (2013) Bottom-up and top-down forces structuring consumer communities in an experimental grassland. Oikos 122:967–976CrossRefGoogle Scholar
  42. Sakschewski B, von Bloh W, Boit A, Poorter L, Pena-Claros M, Heinke J, Joshi J, Thonicke K (2016) Resilience of amazon forests emerges from plant trait diversity. Nat Clim Change 6:1032–1036CrossRefGoogle Scholar
  43. Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze E-D, Roscher C, Weigelt A, Allan E, Beßler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556CrossRefGoogle Scholar
  44. Schuldt A, Bruelheide H, Buscot F, Assmann T, Erfmeier A, Klein AM, Ma K, Scholten T, Staab M, Wirth C, Zhang J, Wubet T (2017) Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Sci Rep 7, Article number 4222.  https://doi.org/10.1038/s41598-017-04619-3
  45. Silva B, Roos K, Voss I, König N, Rollenbeck R, Scheibe R, Beck E, Bendix J (2012) Simulating canopy photosynthesis for two competing species of an anthorpogenic grassland community in the Andes of Southern Ecuador. Ecol Model 239:14–26CrossRefGoogle Scholar
  46. Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307CrossRefGoogle Scholar
  47. Vogel A, Fester T, Eisenhauer N, Scherer-Lorenzen M, Schmid B, Weisser WW, Weigelt A (2013) Separating drought effects from roof artifacts on ecosystem processes in a grassland drought experiment. PLoS ONE 8(8):e70997CrossRefGoogle Scholar
  48. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633.  https://doi.org/10.1126/science.1094875CrossRefGoogle Scholar
  49. Weigelt A, Weisser WW, Buchmann N, Scherer-Lorenzen M (2009) Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6:1695–1706CrossRefGoogle Scholar
  50. Weisser WW et al (2017) Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl Ecol 23(Supplement C):1–73CrossRefGoogle Scholar
  51. Werner FA, Jantz N, Krashevska V, Peters T, Behling H, Maraun M, Scheu S, Brehm G (2013) Climate change: effects on biodiversity and ecosystem functioning. In: Bendix J et al (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecol Stud 221:247–263Google Scholar
  52. Wu YT et al (2013) Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest. PLoS ONE 8:e66829.  https://doi.org/10.1371/journal.pone.0066829CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wullschleger SD, Epstein HE, Box EG, Euskirchen ES, Goswami S, Iversen CM, Kattge J, Norby RJ, van Bodegom PM, Xu H (2014) Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann Bot 114:1–16CrossRefGoogle Scholar
  54. Zark M, Broda NK, Hornick T, Grossart HP, Riebesell U, Dittmar T (2017) Ocean acidification experiments in large-scale mesocosms reveal similar dynamics of dissolved organic matter production and biotransformation. Front Mar Sci 4, Art. Nr. 271.  https://doi.org/10.3389/fmars.2017.00271
  55. Zwölfer H (1987) Species richness, species packing and evolution in insect-plant systems. In: Schulze E-D, Zwölfer H (eds) Potentials and limitations of ecosystem analysis. Springer, Berlin, Heidelberg. Ecol Stud 61:301–319Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Plant Physiology and Bayreuth Center of Ecology and Ecosystem ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations