Advertisement

Emergence in Biomimetic Materials Systems

  • Thomas SpeckEmail author
  • Olga Speck
Chapter

Abstract

The importance of emergent characteristics in the knowledge transfer from biological role models to biomimetic materials systems is discussed. After a brief definition of biomimetics and a description of the two basic approaches to develop biomimetic materials systems and products, we attempt to discern different types of emergence important in biomimetics. Emergent characteristics occurring in the materials systems may concern the same physical property (type 1) or a different physical property (type 2) compared to the properties of the single elements. Additional emergent characteristics important in biomimetics are related to societal values. These emergent values include aesthetic and symbolic values of the biomimetic products (type 3) and the potential contribution to moral values such as sustainability (type 4).

Notes

Acknowledgements

We thank our colleagues from the Plant Biomechanics Group, from the Excellence Cluster livMatS (EXC 2193) and from the CRC 141 for many helpful discussions. We are grateful to the German Research Foundation for the funding of our biomimetic projects in the framework of the CRC-Transregio 141 “Biological Design and Integrative Structures—Analysis, Simulation and Implementation in Architecture” and the Ministry of Science, Research and the Arts of Baden-Württemberg for additional support within the framework of Sustainability Center Freiburg.

References

  1. Antony F, Grießhammer R, Speck T, Speck O (2013) Natur – (k)ein Vorbild für nachhaltige Entwicklung. In: Kesel AB, Zehren D (eds) Bionik: Patente aus der Natur. Tagungsbeiträge zum 6. Bionik-Kongress in Bremen, Bionik-Innovations-Centrum (B-I-C), Bremen, Germany, pp 164–170Google Scholar
  2. Antony F, Grießhammer R, Speck T, Speck O (2014) Sustainability assessment of a lightweight biomimetic ceiling structure. Bioinspir Biomim 9:016013.  https://doi.org/10.1088/1748-3182/9/1/016013CrossRefPubMedGoogle Scholar
  3. Armstrong R (2015) Vibrant architecture: matter as a codesigner of living structures. De Gruyter Open LTD, Warsaw, BerlinCrossRefGoogle Scholar
  4. Bar-Cohen Y (2011) Biomimetics: nature-based innovations. Biomimetic series. CRC Press, 778 ppGoogle Scholar
  5. Born L, Körner A, Schieber G, Westermeier AS, Poppinga S, Sachse R, Bergmann P, Betz O, Bischoff M, Speck T, Knippers J, Milwich M, Gresser GT (2017) Fiber-reinforced plastics with locally adapted stiffness for bio-inspired hingeless, deployable architectural systems. Key Eng Mater 742:689–696 (Trans. Tech. Publications, Switzerland)CrossRefGoogle Scholar
  6. Brundtland Commission (1987) Our common future. Oxford University Press, OxfordGoogle Scholar
  7. Budd M (1998) Aesthetics. In: Craig E (ed) Routledge encyclopedia of philosophy. London (https://www.rep.routledge.com/) (Accessed 28 May 2018)
  8. Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans R Soc A 367:1541–1557.  https://doi.org/10.1098/rsta.2009.0003CrossRefGoogle Scholar
  9. Dumanli AG, Savin T (2014) Recent advances in the biomimicry of structural colours. Chem Soc Rev 45:6698–6724.  https://doi.org/10.1039/C6CS00129GCrossRefGoogle Scholar
  10. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334.  https://doi.org/10.1016/j.pmatsci.2007.06.001CrossRefGoogle Scholar
  11. Frey E, Masselter T, Speck T (2011) Was ist bionisch? Eine Analyse des Ideenflusses von der Biologie in die Technik an ausgewählten Beispielen „bionischer“ Entwicklungen. Naturwiss Rundschau 753(64/3):117–126Google Scholar
  12. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766.  https://doi.org/10.1098/rsif.2012.0341CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gruber P (2011) Biomimetics in architecture: architecture of life and buildings. Springer, WienCrossRefGoogle Scholar
  14. Horn R, Gantner J, Widmer L, Sedlbauer KP, Speck O (2016) Bio-inspired sustainability assessment—a conceptual framework. In: Knippers J, Nickel KG, Speck T (eds) Biomimetic research for architecture and building construction: biological design and integrative structures. Biologically-inspired systems, vol 9. Springer International Publishing, Switzerland, pp 361–377CrossRefGoogle Scholar
  15. Horn R, Dahy H, Gantner J, Speck O, Leistner P (2018) Bio-inspired sustainability assessment for building product development—concept and case study. Sustainability 10(1):130–154.  https://doi.org/10.3390/su10010130CrossRefGoogle Scholar
  16. Imhof B, Gruber P (eds) (2015) Built to grow—blending architecture and biology. Birkhäuser, BaselGoogle Scholar
  17. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc Roy Soc Lond B Biol 234:415–440.  https://doi.org/10.1098/rspb.1988.0056CrossRefGoogle Scholar
  18. Kinoshita S (2008) Structural colors in the realm of nature. World Scientific Publishing, SingaporeGoogle Scholar
  19. Kinoshita S, Yoshioka S (eds) (2005) Structural colors in biological systems—principles and applications. Osaka University Press, OsakaGoogle Scholar
  20. Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspir Biomim 7:015002.  https://doi.org/10.1088/1748-3182/7/1/015002CrossRefPubMedGoogle Scholar
  21. Knippers J, Scheible F, Jungjohann H, Oppe M (2012) Kinetic media façade consisting of GFRP louvers. In: Proceedings of the 6th international conference on FRP composites in civil engineering (CICE 2012), 8 ppGoogle Scholar
  22. Knippers J, Nickel KG, Speck T (eds) (2016) Biomimetic research for architecture and building construction: biological design and integrative structures. Biologically-inspired systems, vol 9. Springer International Publishing, Switzerland, 408 ppGoogle Scholar
  23. Körner A, Born L, Mader A, Sachse R, Saffarian S, Westermeier AS, Poppinga S, Bischoff M, Gresser GT, Milwich M, Speck T, Knippers J (2018) Flectofold—a biomimetic compliant shading device for complex free form facades. Smart Mater Struct 27(1):017001.  https://doi.org/10.1088/1361-665X/aa9c2fCrossRefGoogle Scholar
  24. Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hinge-less flapping mechanism inspired by nature. Bioinspir Biomim 6:045001.  https://doi.org/10.1088/1748-3182/6/4/045001CrossRefPubMedGoogle Scholar
  25. Luz GM, Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans A Math Phys Eng Sci 367:1587–1605.  https://doi.org/10.1098/rsta.2009.0007CrossRefGoogle Scholar
  26. Masselter T, Speck T (2011) Biomimetic fiber-reinforced compound materials. In: George A (ed) Advances in biomimetics. Intech, Rijeka, Croatia, pp 195–210Google Scholar
  27. Masselter T, Barthlott W, Bauer G, Bertling J, Cichy F, Ditsche-Kuru P, Gallenmüller F, Gude M, Haushahn T, Hermann M, Immink H, Knippers J, Lienhard J, Luchsinger R, Lunz K, Mattheck C, Milwich M, Mölders N, Neinhuis C, Nellesen A, Poppinga S, Rechberger M, Schleicher S, Schmitt C, Schwager H, Seidel R, Speck O, Stegmaier T, Tesari I, Thielen M, Speck T (2012) Biomimetic products. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. CRC Press/ Taylor & Francis Group, Boca Raton, London, New York, pp 377–429Google Scholar
  28. Menges A, Reichert S (2015) Performative wood: physically programming the responsive architecture of the hygroscope and hygroskin projects. AD Architect Des 85(5):66–73.  https://doi.org/10.1002/ad.1956CrossRefGoogle Scholar
  29. Milwich M, Speck T, Speck O, Stegmeier T, Planck H (2006) Biomimetics and technical textiles: solving engineering problems with the help of nature’s wisdom. Am J Bot 93:1455–1465CrossRefGoogle Scholar
  30. Nachtigall W, Pohl G (2013) Bau-Bionik: Natur – Analogien – Technik, 2nd edn. Springer Vieweg, Berlin, HeidelbergGoogle Scholar
  31. Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L (2007) Spiers memorial lecture—lessons from biomineralization: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Fraday Discuss 136:9–25.  https://doi.org/10.1039/B704418FCrossRefGoogle Scholar
  32. Parascho S, Knippers J, Dörstelmann M, Prado M, Menges A (2014) Modular fibrous morphologies: computational design, simulation and fabrication of differentiated fibre composite building components. In: Block P, Knippers J, Mitra NJ, Wang W (eds) Advances in architectural geometry. Springer, Vienna, pp 29–45Google Scholar
  33. Parker AR (2000) 515 million years of structural colour. J Opt A Pure Appl Opt 2(6):R15–R28.  https://doi.org/10.1088/1464-4258/2/6/201CrossRefGoogle Scholar
  34. Poppinga S, Masselter T, Speck T (2013) Faster than their prey: new insights into the rapid movements of active carnivorous plants traps. BioEssays 35:649–657.  https://doi.org/10.1002/bies.201200175CrossRefPubMedGoogle Scholar
  35. Poppinga S, Körner A, Sachse R, Born L, Westermeier A, Hesse L, Knippers J, Bischoff M, Gresser GT, Speck T (2016) Compliant mechanisms in plants and architecture. In: Knippers J, Nickel KG, Speck T (eds) Biomimetic research for architecture and building construction: biological design and integrative structures. Biologically-inspired systems, vol 9. Springer International Publishing, Switzerland, pp 169–193CrossRefGoogle Scholar
  36. Poppinga S, Nestle N, Šandor A, Reible B, Masselter T, Bruchmann B, Speck T (2017) Hygroscopic motions of fossil conifer cones. Sci Rep 7:40302.  https://doi.org/10.1038/srep40302CrossRefPubMedPubMedCentralGoogle Scholar
  37. Poppinga S, Zollfrank C, Prucker O, Rühe J, Menges A, Cheng T, Speck T (2018) Towards a new generation of smart biomimetic actuators for architecture. Adv Mater 30(19):1703653.  https://doi.org/10.1002/adma.201703653CrossRefGoogle Scholar
  38. Reichert S, Menges A, Correa D (2015) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput Aid Des 60:50–69.  https://doi.org/10.1016/j.cad.2014.02.010CrossRefGoogle Scholar
  39. Rüggeberg M, Burgert I (2015) Bio-inspired wooden actuators for large scale applications. PLoS ONE 10(4):e0120718.  https://doi.org/10.1371/journal.pone.0120718CrossRefGoogle Scholar
  40. Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2015) A methodology for transferring principles in plant movements to elastic systems in architecture. Comput Aid Des 60:105–117.  https://doi.org/10.1016/j.cad.2014.01.005CrossRefGoogle Scholar
  41. Sepp HR, Embree L (2010) Handbook of phenomenological aesthetics. Springer, Dordrecht, New YorkCrossRefGoogle Scholar
  42. Speck T (2015) Approaches to bio-inspiration in novel architecture. In: Imhof B, Gruber P (eds) Built to grow—blending architecture and biology. Birkhäuser, Basel, pp 145–149Google Scholar
  43. Speck T, Burgert I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193.  https://doi.org/10.1146/annurev-matsci-062910-100425CrossRefGoogle Scholar
  44. Speck T, Speck O (2008) Process sequences in biomimetic research. In: Brebbia CA (ed) Design and nature IV. WIT Press, Southampton, pp 3–11CrossRefGoogle Scholar
  45. Speck T, Knippers J, Speck O (2015) Self-X-materials and -structures in nature and technology: bio-inspiration as driving force for technical innovation. AD Architect Des 85(5):34–39.  https://doi.org/10.1002/ad.1951CrossRefGoogle Scholar
  46. Speck O, Speck D, Horn R, Gantner J, Sedlbauer KP (2017) Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir Biomim 12(1):011004.  https://doi.org/10.1088/1748-3190/12/1/011004CrossRefGoogle Scholar
  47. VDI 6220 (2012) Bionik: Konzeption und Strategie—Abgrenzung zwischen bionischen und konventionellen Verfahren/Produkten;Biomimetics: conception and strategy—differences between biomimetics and conventional methods/products. VDI, Beuth, BerlinGoogle Scholar
  48. VDI 6226 (2015) Bionik: Architektur, Ingenieurbau, Industriedesign—Grundlagen; Biomimetics: architecture, civil engineering, industrial design—basic principles. Beuth, BerlinGoogle Scholar
  49. Vincent JF (2002) Survival of the cheapest. Mater Today 5(12):28–41CrossRefGoogle Scholar
  50. Vincent JFV (2009) Biomimetics—a review. Proc Inst Mech Eng H - J Eng Med 223(8):919–939. https://doi.org/10.1243/09544119JEIM561CrossRefGoogle Scholar
  51. Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199.  https://doi.org/10.1016/j.asd.2004.05.006CrossRefPubMedGoogle Scholar
  52. von Carlowitz HC (1773) Sylvicultura oeconomica oder haußwirthliche Nachricht und Naturmäßige Anweisung zur wilden Baum-Zucht. Johan Friedrich Braun, LeipzigGoogle Scholar
  53. von Gleich A, Pade C, Petschow U, Pissarskoie E (2010) Potentials and trends in biomimetics. Springer, HeidelbergCrossRefGoogle Scholar
  54. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie R (2015) Bioinspired structural materials. Nat Mater 14:23–36.  https://doi.org/10.1038/nmat4089CrossRefPubMedGoogle Scholar
  55. Westermeier A, Sachse R, Poppinga S, Vögele P, Adamec L, Speck T, Bischoff M (2018) How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. Proc Roy Soc Lond B Bio l285:20180012.  https://doi.org/10.1098/rspb.2018.0012CrossRefGoogle Scholar
  56. Whitesides GM (2015) Bioinspiration: something for everyone. Interface Focus 5:20150031.  https://doi.org/10.1098/rsfs.2015.0031CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wilkerson RP, Gludovatz B, Watts J, Tomsia AP, Hilmas GE, Ritchie RO (2016) A novel approach to developing biomimetic (“Nacre-Like”) metal-compliant-phase (Nickel–Alumina) ceramics through coextrusion. Adv Mater 28(45):10061–10067.  https://doi.org/10.1002/adma.201602471CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Plant Biomechanics Group, Botanic GardenUniversity of FreiburgFreiburgGermany
  2. 2.Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)FreiburgGermany

Personalised recommendations