Emergence and Modularity in Life Sciences pp 37-49 | Cite as
Modular Organization and Emergence in Systems Biology
Chapter
First Online:
Abstract
Understanding, how cellular functions emerge from the interaction of biological components, is the main goal of systems biology. Here, we review the relevance of a modular organization and the emergence of collective dynamical states in systems biology and show that the concept of networks (i.e., the representation of biological systems in terms of nodes and links) allows us to formally define modularity and to quantitatively assess the impact of modularity on the emergent dynamical behaviors.
References
- Arenas A, Diaz-Guilera A (2007) Synchronization and modularity in complex networks. Eur Phys J Spec Top 143(1):19–25Google Scholar
- Arenas A, Diaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96(11):114,102Google Scholar
- Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153Google Scholar
- Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2PubMedPubMedCentralGoogle Scholar
- Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–291PubMedGoogle Scholar
- Badimon L, Vilahur G, Padro T (2017) Systems biology approaches to understand the effects of nutrition and promote health. Br J Clin Pharmacol 83(1):38–45PubMedGoogle Scholar
- Barabási AL (2016) Network science. Cambridge University PressGoogle Scholar
- Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101PubMedGoogle Scholar
- Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat. Rev Genet 12(1):56PubMedPubMedCentralGoogle Scholar
- Bauer CR, Knecht C, Fretter C, Baum B, Jendrossek S, Rühlemann M, Heinsen FA, Umbach N, Grimbacher B, Franke A et al (2017) Interdisciplinary approach towards a systems medicine toolbox using the example of inflammatory diseases. Brief Bioinf 18(3):479–487Google Scholar
- Beber ME, Fretter C, Jain S, Sonnenschein N, Müller-Hannemann M, Hütt MT (2012) Artefacts in statistical analyses of network motifs: general framework and application to metabolic networks. J R Soc. Interface p:rsif20120490Google Scholar
- Beber ME, Armbruster D, Hütt MT (2013) The prescribed output pattern regulates the modular structure of flow networks. Eur Phys J B 86(11):473Google Scholar
- Bork P, Jensen LJ, Von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14(3):292–299PubMedGoogle Scholar
- Clune J, Mouret JB, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B 280(1755):20122,863Google Scholar
- Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD et al (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306):aaf1420Google Scholar
- Csete M, Doyle J (2004) Bow ties, metabolism and disease. TRENDS in Biotechnology 22(9):446–450PubMedGoogle Scholar
- Damicelli F, Hilgetag CC, Hütt MT, Messé A (2017) Modular topology emerges from plasticity in a minimalistic excitable network model. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4):047,406Google Scholar
- De Domenico M, Lancichinetti A, Arenas A, Rosvall M (2015) Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys Rev X 5(1):011,027Google Scholar
- De Menezes MA, Barabási AL (2004) Fluctuations in network dynamics. Phys Rev Lett 92(2):028,701Google Scholar
- Enders M, Hütt MT, Jeschke JM (2018) Drawing a map of invasion biology based on a network of hypotheses. Ecosphere 9(3):e02,146Google Scholar
- Erdős P, Rényi A (1959) On random graphs, i. Publ Math (Debrecen) 6:290–297Google Scholar
- Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174Google Scholar
- Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44Google Scholar
- Fretter C, Müller-Hannemann M, Hütt MT (2012) Subgraph fluctuations in random graphs. Phys Rev E 85(5):056,119Google Scholar
- Garcia GC, Lesne A, Hütt MT, Hilgetag CC (2012) Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front Comput Neurosci 6:50PubMedPubMedCentralGoogle Scholar
- Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826Google Scholar
- Goh KI, Choi IG (2012) Exploring the human diseasome: the human disease network. Brief Funct Gen 11(6):533–542Google Scholar
- Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895PubMedPubMedCentralGoogle Scholar
- Guimera R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70(2):025,101Google Scholar
- Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88PubMedGoogle Scholar
- Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761supp):C47PubMedGoogle Scholar
- Helikar T, Konvalina J, Heidel J, Rogers JA (2008) Emergent decision-making in biological signal transduction networks. Proc Nat Acad Sci 105(6):1913–1918PubMedGoogle Scholar
- Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682PubMedGoogle Scholar
- Hütt MT (2014) Understanding genetic variation-the value of systems biology. Br J Clin Pharmacol 77(4):597–605PubMedPubMedCentralGoogle Scholar
- Hütt MT, Kaiser M, Hilgetag CC (2014) Perspective: network-guided pattern formation of neural dynamics. Phil Trans R Soc B 369(1653):20130,522Google Scholar
- Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41PubMedGoogle Scholar
- Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Nat Acad Sci U S A 102(39):13,773–13,778Google Scholar
- Kitano H (2002a) Computational systems biology. Nature 420(6912):206PubMedGoogle Scholar
- Kitano H (2002b) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedGoogle Scholar
- Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826PubMedGoogle Scholar
- Knecht C, Fretter C, Rosenstiel P, Krawczak M, Hütt MT (2016) Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls. Sci Rep 6(32):584Google Scholar
- Kosmidis K, Beber M, Hütt MT (2015) Network heterogeneity and node capacity lead to heterogeneous scaling of fluctuations in random walks on graphs. Adv Complex Syst 18(01n02):1550,007Google Scholar
- Kreimer A, Borenstein E, Gophna U, Ruppin E (2008) The evolution of modularity in bacterial metabolic networks. Proc Nat Acad Sci 105(19):6976–6981PubMedGoogle Scholar
- Kuramoto Y (1984) Chemical oscillations, waves and turbulenceGoogle Scholar
- Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4(10):e312PubMedPubMedCentralGoogle Scholar
- Ma HW, Zeng AP (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11):1423–1430PubMedGoogle Scholar
- Marr C, Theis FJ, Liebovitch LS, Hütt MT (2010) Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of escherichia coli. PLoS Comput Biol 6(7):e1000,836PubMedPubMedCentralGoogle Scholar
- Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913PubMedGoogle Scholar
- Messé A, Hütt MT, König P, Hilgetag CC (2015) A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Sci Rep 5:7870PubMedPubMedCentralGoogle Scholar
- Messé A, Hütt MT, Hilgetag CC (2018) Toward a theory of coactivation patterns in excitable neural networks. PLoS Comput Biol14(4):e1006,084PubMedPubMedCentralGoogle Scholar
- Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200Google Scholar
- Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827PubMedGoogle Scholar
- Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000,190Google Scholar
- Newman ME (2004) Coauthorship networks and patterns of scientific collaboration. Proc Nat Acad Sci 101(suppl 1):5200–5205Google Scholar
- Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026,113Google Scholar
- Parter M, Kashtan N, Alon U (2007) Environmental variability and modularity of bacterial metabolic networks. BMC Evol Biol 7(1):169PubMedPubMedCentralGoogle Scholar
- Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555PubMedGoogle Scholar
- Rodrigues FA, Peron TKD, Ji P, Kurths J (2016) The kuramoto model in complex networks. Phys Rep 610:1–98Google Scholar
- Rosvall M, Bergstrom C (2008) Maps of random walks on complex networks reveal community structure. Proc Nat Acad Sci 105:1118–1123PubMedGoogle Scholar
- Rosvall M, Esquivel AV, Lancichinetti A, West JD, Lambiotte R (2014) Memory in network flows and its effects on spreading dynamics and community detection. Nat Commun 5:4630PubMedGoogle Scholar
- Silverman EK, Loscalzo J (2013) Developing new drug treatments in the era of network medicine. Clin Pharmacol Ther 93(1):26–28PubMedGoogle Scholar
- Singh S, Samal A, Giri V, Krishna S, Raghuram N, Jain S (2013) Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks. Phys Rev E 87(5):052,708Google Scholar
- Sonnenschein N, Geertz M, Muskhelishvili G, Hütt MT (2011) Analog regulation of metabolic demand. BMC Syst Biol 5(1):40PubMedPubMedCentralGoogle Scholar
- Sonnenschein N, Dzib JFG, Lesne A, Eilebrecht S, Boulkroun S, Zennaro MC, Benecke A, Hütt MT (2012) A network perspective on metabolic inconsistency. BMC Syst Biol 6(1):41PubMedPubMedCentralGoogle Scholar
- Strogatz S (2001) Exploring complex networks. Nat 410(6825):268–76Google Scholar
- Strogatz SH (2000) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D: Nonlinear Phenom 143(1):1–20Google Scholar
- Voordijk H, Meijboom B, de Haan J (2006) Modularity in supply chains: a multiple case study in the construction industry. Int J Oper Prod Manag 26(6):600–618Google Scholar
- Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921PubMedGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019