Advertisement

Emergence and Sustainment of Humankind on Earth: The Categorical Imperative

  • Ulrich LüttgeEmail author
  • Fabio Rubio Scarano
Chapter

Abstract

This essay argues that the “sustainment” of humankind on Earth will require short-term ruptural transformation of rooted individual and societal attitudes and ethics into a new categorical imperative. We establish a difference between “sustainment” of humankind and “sustainability”. Sustainment is the process of dynamic state of maintenance of conditions without destruction of prerequisite requirements for well and healthy performance of organisms and systems of life emergent on Earth (i.e. ecological stability). Sustainability is as a moral value related to intergenerational justice, and therefore a societal goal or utopia, backed up by specific science and policy tools. To address sustainment of humankind on Earth, we first provide a brief history on origins and extinction processes, then we discuss existing problems and challenges for sustainment, and we finally provide a reflection on plausible futures with humankind sustained. We aimed to balance out futures perspectives such as those related to the Gaia hypothesis, to the evolution of consciousness, and to trans-humanism, as constrained by the short time left for humankind to halt or reverse the trajectory of planetary degradation it imposed on the planet.

References

  1. Alexandre L (2015) Les transhumanistes ont gagné sans livrer bataille. La Recherche 504:89–90Google Scholar
  2. Allwood A, Brown A (2004) Seeking the oldest evidence of life on Earth. Microbiol Aust 25:26–27Google Scholar
  3. Alroy J (2008) Dynamics of organization and extinction in the marine fossil record. Proc Natl Acad Sci USA 105(Suppl. 1):11536–11542CrossRefGoogle Scholar
  4. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma irradiation. Food Technol 10:575–577Google Scholar
  5. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann Rev Microbiol 51:203–224CrossRefGoogle Scholar
  6. Berger F, Lethimonnier F, Sigaux F (2015) Tuer la mort est un crime contre l’humanité. La Recherche 504:84–86Google Scholar
  7. Bolker JA (2000) Modularity in development and why it matters to evo-devo. Am Zool 4:770–776Google Scholar
  8. Börner G (2012) Die Entwicklung des Kosmos: Vom Urknall zum komplexen Universum. In: Hacker J, Hecker M (eds) Was ist Leben? Nova Acta Leopoldina 116/394:41–68. HalleGoogle Scholar
  9. Butterfield NJ (2007) Macroevolution and macroecology through deep time. Paleontology 50:41–55CrossRefGoogle Scholar
  10. Courtillot V (1995) La vie en catastrophes – Du hasard dans l’évolution des espèces. Arthème Fayard, PairsGoogle Scholar
  11. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892CrossRefGoogle Scholar
  12. Diamond J (1991) The rise and fall of the third chimpanzee. Vintage, LondonGoogle Scholar
  13. Donoghue PCJ, Antcliffe JB (2010) Early life: origins of multi-cellularity. Nature 466:41–42CrossRefGoogle Scholar
  14. El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R, Mazurier A, Hammarlund E, Boulvais P, Dupuy J-J, Fontaine C, Fuersich FT, Gauthier-Lafaye F, Janvier P, Javaux E, Ossa F, Pierson-Wickmann A-C, Riboulleau A, Sardini P, Vachard D, Whitehouse M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104CrossRefGoogle Scholar
  15. FAO (2011) Global food losses and food waste—extent, causes and prevention. Food and Agriculture Organization, RomeGoogle Scholar
  16. Frederikson JK, Onstott TC (1996) Leben im Tiefengestein. Spektrum der Wissenschaft 12(1996):66–71Google Scholar
  17. Fyfe WS (1996) The biosphere is going deep. Science 273:448CrossRefGoogle Scholar
  18. Gould SJ (1989) Wonderful life: the Burgess shale and the nature of history. W. W. Norton, New YorkGoogle Scholar
  19. Gray PM, Krause B, Atema J, Payne R, Krumhansl C, Baptista L (2001) The music of nature and the nature of music. Science 291:52–54CrossRefGoogle Scholar
  20. Grazhdankin D (2014) Patterns of evolution of the Ediacaran soft-bodied biota. J Palaeontol 88:269–283CrossRefGoogle Scholar
  21. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E, Velicogna I, Tormey B, Donovan B, Kandiano E, von Schuckmann K, Kharecha P, Legrande AN, Bauer M, Lo K-W (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2° global warming could be dangerous. Atmos Chem Phys 16:3761–3812CrossRefGoogle Scholar
  22. Harari YN (2017) Homo Deus. A brief history of tomorrow. Vintage, LondonCrossRefGoogle Scholar
  23. Heschl A (2009) Darwins Traum. Die Entstehung des menschlichen Bewusstseins. Wiley-VCH, WeinheimGoogle Scholar
  24. IPBES (2018) Summary for policymakers of the thematic assessment report on land degradation and restoration of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Scholes R, Montanarella L, Brainich A, Barger N, ten Brink B, Cantele M, Erasmus B, Fisher J, Gardner T, Holland TG, Kohler F, Kotiaho JS, von Maltitz G, Nangendo G, Pandit R, Parrotta J, Potts MD, Prince S, Sankaran M, Willemen L (eds) IPBES Secretariat, Bonn, GermanyGoogle Scholar
  25. Jaeger L (2017) Wissenschaft und Spiritualität. Universum, Leben, Geist –Zwei Wege zu den großen Geheimnissen. Springer, Berlin, HeidelbergGoogle Scholar
  26. James SP (2015) Environmental philosophy. An introduction. Polity Press, CambridgeGoogle Scholar
  27. Jonas H (2003) Das Prinzip Verantwortung. Versuch einer Ethik für die technologische Zivilisation. Suhrkamp Taschenbuch, Frankfurt a. M.Google Scholar
  28. Kerr RA (1997) Geomicrobiology: life goes to extremes in the deep Earth—and elsewhere? Science 276:703–704CrossRefGoogle Scholar
  29. Küng H (1990) Projekt Weltethos. Piper Verlag, MünchenGoogle Scholar
  30. Küng H, Kuschel K-J (2001) (eds) Wissenschaft und Weltethos. Piper-Verlag, MünchenGoogle Scholar
  31. Lorenz K (1977) Die Rückseite des Spiegels. Versuch einer Naturgeschichte menschlichen Erkennens. Deutscher Taschenbuch Verlag, MünchenGoogle Scholar
  32. Lovelock JE (1979) Gaia. A new look at life on Earth. Oxford University Press, OxfordGoogle Scholar
  33. Lovelock JE (2009) The vanishing face of Gaia—a final warning. Basic Books, New YorkGoogle Scholar
  34. Lüttge U (2012) Modularity and emergence: biology’s challenge in understanding life. Plant Biol 14:865–871CrossRefGoogle Scholar
  35. Lüttge U (2013) The planet Earth: can it feed nine billion people? In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114/391:345–364Google Scholar
  36. Lüttge U (2016) Plants shape the terrestrial environment on Earth: challenges of management for sustainability. Prog Botany 77:187–217Google Scholar
  37. Lüttge U, Garbin ML, Scarano FR (2013) Evo-Devo-Eco and ecological stem species: potential repair systems in the planetary biosphere crisis. Prog Botany 74:191–212CrossRefGoogle Scholar
  38. MacGregor N (2010) A history of the world in 100 objects. Penguin BooksGoogle Scholar
  39. Mathesius U, Watt M (2010) Rhizosphere signals for plant-microbe interactions: implications for field-grown plants. Prog Botany 72:125–161Google Scholar
  40. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637CrossRefGoogle Scholar
  41. Matyssek R, Lüttge U (2013) Gaia: the planet holobiont. Nova Acta Leopoldina NF 114(391):325–344Google Scholar
  42. Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) (2013a) Climate change, air pollution and global challenges. Developments in environmental sciences, vol 13. Elsevier, AmsterdamGoogle Scholar
  43. Matyssek R, Wieser G, Fleischmann F, Grünhage L (2013b) Ozone research, quo vadis? Lessons from the free-air canopy fumigation experiment at Kranzberg Forest, pp 103–129. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Developments in environmental sciences, vol 13. Elsevier, AmsterdamGoogle Scholar
  44. Melott AL, Bambach RK (2011) A ubiquitous ≈62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity I. Documentation. Palaeobiology 7:92–112Google Scholar
  45. Morris SC (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, New YorkGoogle Scholar
  46. Morris SC (2008) Jenseits des Zufalls. Wir Menschen im einsamen Universum. Berlin University Press, BerlinGoogle Scholar
  47. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  48. Nachtigall W (2010) Bionik als Wissenschaft. Erkennen – Abstrahieren – Umsetzen. Springer, HeidelbergGoogle Scholar
  49. Niemann H-J (2013) Karl Popper, die Mühle bei Hunstanton und die Anfänge der Molekularbiolgie. Bemerkungen zu Karl Poppers Medawar-Vorlesung, Teil II. Aufklärung und Kritik 2:7–34Google Scholar
  50. Nietzsche F (1883–1885, 1891) Also sprach Zarathustra. Chemnitz & LeipzigGoogle Scholar
  51. Noad MJ, Cato DH, Bryden MM, Jenner M-N, Jenner KCS (2000) Cultural revolution in whale songs. Nature 408:537.  https://doi.org/10.1038/35046199CrossRefPubMedGoogle Scholar
  52. Omrod JS (2011) Making room for the tigers and the polar bears: biography, phantasy and ideology in the voluntary human extinction movement. Psychoanal Cult Soc 16:142–161CrossRefGoogle Scholar
  53. Pajot P, Mayor M (2015) La quête d’exoplanètes est devenue un pan majeur de l’astrophysique. La Recherche 504:34–37Google Scholar
  54. Pandey V, Oksanen E, Singh N, Sharma C (2013) Impacts of air pollution and climate change on plants: implications for India. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Developments in environmental sciences, vol 13. Elsevier, Amsterdam, pp 391–409Google Scholar
  55. Peterson KJ, Waggoner B, Hagadorn JW (2003) A fungal analog for newfoundland ediacaran fossils? Integr Comp Biol 43:127–136CrossRefGoogle Scholar
  56. Popper KR (2013) Eine Neuinterpretation des Darwinismus. Die erste Medawar-Vorlesung 1986. Aufklärung und Kritrik 1:7–20Google Scholar
  57. Puppim de Oliveira JÁ, Balaban O, Doll CNH, Moreno-Peñaranda R, Gasparatos A, Iossifova D, Suwa A (2011) Cities and biodiversity: perspectives and governance challenges for implementing the convention on biological diversity (CBD) at the city level. Biol Cons 144:1302–1313CrossRefGoogle Scholar
  58. Retallack GJ (1994) Where the Ediacaran fossils lichens? Paleobiology 20:523–544CrossRefGoogle Scholar
  59. Robert B, Jouzel J (2015) Je crois en un sursaut de ce monde face au problème climatique. La Recherche 506:5–8Google Scholar
  60. Sánchez-Bayo F, Tennekes HA (2015) Environmental risk assessment of agrochemicals—a critical appraisal of current approaches. In: Larramendy ML, Soloneski S (eds) Toxicity and hazard of agrochemicals, Intech open science.  https://doi.org/10.5772/59450Google Scholar
  61. Scarano FR (2019) The emergence of sustainability. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Cham, pp 51–74Google Scholar
  62. Scarano FR, Garbin ML (2013) Stem species: plant species that function as regenerating cells of Gaia. Nova Acta Leopoldina NF 114(391):317–324Google Scholar
  63. Scarano FR, Rios RI, Esteves FA (1998) Tree species richness, diversity and flooding regime: case studies of recuperation after anthropic impact in Brazilian flood-prone forests. Int J Ecol Environ Sci 24:223–225Google Scholar
  64. Schmidt JC (2019) Is there anything new under the sun? Instability as the core of emergence. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Cham, pp 3–36Google Scholar
  65. Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 27:43–54CrossRefGoogle Scholar
  66. Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity—complexity—diversity in eco-physiology. Prog Botany 76:211–239Google Scholar
  67. Speck T, Speck O (2019) Emergence in biomimetic materials systems. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Cham, pp 97–115Google Scholar
  68. Steffen W, Richardson K, Röckstrom J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347  https://doi.org/10.1126/science.1259855CrossRefGoogle Scholar
  69. Teilhard de Chardin P (1956) Le groupe zoologique humain. Éditions Albin Michel, ParisGoogle Scholar
  70. Teilhard de Chardin P (1966) Die Entstehung des Menschen, 4th ed. C. H. Beck, MünchenGoogle Scholar
  71. Thivent V (2015) La nouvelle condition humaine. La Recherche 504:80–82Google Scholar
  72. Varner GE (1998) In nature’s interests? Interests, animal rights, and environmental ethics. Oxford University Press, New YorkGoogle Scholar
  73. Weisman A (2007a) The world without us. Thomas Dunne Books, St. Martin’s Press, New YorkGoogle Scholar
  74. Weisman A (2007b) Die Welt ohne uns. Piper, München–ZürichGoogle Scholar
  75. von Weizsäcker EU (2001) Ökologisches Weltethos. In: Küng H, Kuschel K-J (eds) Wissenschaft und Weltethos. Piper-Verlag, München, pp 337–355Google Scholar
  76. Wilson EO (2002) The future of life. Alfred A. Knopf, New YorkGoogle Scholar
  77. Wilson EO (2004) Die Zukunft des Lebens. Wilhelm Goldmann Verlag, MünchenGoogle Scholar
  78. Zachos FE, Habel JC (eds) (2011) Biodiversity hotspots. Springer, HeidelbergGoogle Scholar
  79. zu Castell W, Lüttge U, Matyssek R (2019) Gaia—a holobiont like system emerging from interaction. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Cham, pp 255–279Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Darmstadt University of TechnologyDarmstadtGermany
  2. 2.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations