Advertisement

Plant MIRnome: miRNA Biogenesis and Abiotic Stress Response

  • Deepu Pandita
Chapter

Abstract

MicroRNAs (miRNAs) are small, endogenous, conserved, non-coding single-stranded RNAs 21 to 25 nt enigmatic molecules, which regulate gene expression at the transcriptional and post-transcriptional levels through sequence complementarity via mRNA cleavage or translational repression in a wide range of organisms. Besides the key regulatory processes such as cellular, biological‚ metabolism, growth, and development, a substantial number of miRNAs play imperative functions in various abiotic stress responses. Plants have highly conserved and more recently evolved species-specific miRNAs to control a vast array of biological processes and abiotic stress responses. Research investigations have established major molecular framework of miRNA biogenesis and modes of action in plants. The crosstalk of miRNAs with different abiotic stresses is discussed comprehensively. In this chapter, we summarize the current knowledge on miRNA biogenesis, mode of action, and the role of miRNA in abiotic stress response in plants.

Keywords

MicroRNAs miRNA biogenesis Mode of action Abiotic stress response 

References

  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  3. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488PubMedCrossRefGoogle Scholar
  4. Amor BB, Wirth S, Merchan F, Laporte P, d’Aubenton- Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Alicia Covarrubias A, Luis Reyes J (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401PubMedCrossRefGoogle Scholar
  6. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY et al (2013) Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol 161:362–373PubMedCrossRefGoogle Scholar
  8. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339PubMedCrossRefGoogle Scholar
  9. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2 MicroRNA399 and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–1997PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blumwald E, Grover A (2006) Salt tolerance. In: Halford NG (ed) Plant biotechnology: current and future uses of genetically modified crops. Wiley, London, pp 206–224CrossRefGoogle Scholar
  16. Bonnet E, Wuyts J, Rouze P, Van de PY (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Nat Acad Sci U S A 101:11511–11516CrossRefGoogle Scholar
  17. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high- throughput sequencing and degradome analysis. BMC Genomics 15:11–30CrossRefGoogle Scholar
  19. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chiou T, Aung K, Lin S, Wu C, Chiang S, Su C (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen X (2009) Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology 25:21–44Google Scholar
  23. Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide highthroughput sequencing. Planta 235:375–386Google Scholar
  24. Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086PubMedCrossRefPubMedCentralGoogle Scholar
  27. Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7:e50298PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fang Q, Xu Z, Song R (2006) Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochem Biophys Res Commun 347:707–714PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fang X, Cui Y, Li Y, Qi Y (2015) Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat Plants 1:15075PubMedCrossRefPubMedCentralGoogle Scholar
  30. Feng H, Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z (2013) Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83:433–443PubMedCrossRefPubMedCentralGoogle Scholar
  31. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486PubMedCrossRefGoogle Scholar
  32. Francisco-Mangilet AG, Karlsson P, Kim MH, Eo HJ, Oh SA, Kim JH, Kulcheski FR, Park SK, Manavella PA (2015) THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. Plant J 82:1018–1029PubMedCrossRefGoogle Scholar
  33. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165PubMedCrossRefGoogle Scholar
  34. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043PubMedCrossRefGoogle Scholar
  35. Fukudome A, Fukuhara T (2017) Plant dicer-like proteins: double-stranded RNA cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44PubMedCrossRefGoogle Scholar
  36. Furumizu C, Tsukaya H, Komeda Y (2010) Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16:1809–1817PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, JiW GD, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001PubMedCrossRefGoogle Scholar
  38. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) Osa-MIR393: a salinity and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242PubMedCrossRefGoogle Scholar
  39. Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gepstein S, Grover A, Blumwald E (2006) Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat, and drought. In: Knablein J, Muller RHW (eds) Modern biopharmaceuticals: design, development and optimization. Wiley-VCH Verlag GmbH, Weinhaum, pp 967–994Google Scholar
  41. Gonatopoulos-Pournatzis T, Cowling VH (2014) Cap-binding complex (CBC). Biochem J 457:231–242PubMedCrossRefGoogle Scholar
  42. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermo tolerance in Arabidopsis. Plant J 74:840–851PubMedCrossRefGoogle Scholar
  43. Hammond SC, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 404:293–296PubMedCrossRefGoogle Scholar
  44. Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci U S A 101:1093–1098PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132PubMedPubMedCentralCrossRefGoogle Scholar
  46. Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M (2010) In vitro assembly of plant RNA induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39:282–291PubMedCrossRefGoogle Scholar
  47. Iwakawa HO, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52:591–601PubMedCrossRefGoogle Scholar
  48. Jagadeeswaran G, Zheng Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184:85–98PubMedCrossRefGoogle Scholar
  49. Jian X, Zhang L, Li G, Zhang L, Wang X, Cao X, Fang X, Zha FC (2010) Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics 95:47–50PubMedCrossRefGoogle Scholar
  50. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  51. Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811PubMedCrossRefGoogle Scholar
  52. Kansal S, Devi RM, Balyan SC, Arora MK, Singh AK, Mathur S, Raghuvanshi S (2015) Unique miRNome during anthesis in drought-tolerant indica rice var. Nagina 22. Planta 241:1543–1559PubMedCrossRefGoogle Scholar
  53. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507PubMedCrossRefGoogle Scholar
  54. Kantar M, Lucas S, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484PubMedCrossRefGoogle Scholar
  55. Kateryna F, Benoit L, Olivier H (2016) Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem. Plant Signal Behav 11:3Google Scholar
  56. Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Org Cult 118:279–292CrossRefGoogle Scholar
  57. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148PubMedCrossRefGoogle Scholar
  58. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  59. Kim JL, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010a) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51:1079–1083PubMedCrossRefGoogle Scholar
  60. Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H (2010b) Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232:1447–1454PubMedCrossRefGoogle Scholar
  61. Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GA, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. The Plant Cell 24:3590–3602Google Scholar
  64. Kulcheski FR, Côrrea R, Gomes IA, de Lima JC and Margis R (2015) NPK macronutrients and microRNA homeostasis. Front. Plant Sci. 6:451Google Scholar
  65. Kong Y, Elling A, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant Sciences 1:69–76Google Scholar
  66. Kumar S, Verma S, Trivedi PK (2017) Involvement of small RNAs in phosphorus and Sulfur sensing, Signaling and stress: current update. Front Plant Sci 8:285PubMedPubMedCentralGoogle Scholar
  67. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  69. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedCrossRefGoogle Scholar
  70. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRefGoogle Scholar
  71. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  72. Lee Y, Kim M, Han J, Yeom K, Lee S, Baek SH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011a) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li T, Li H, Zhang YX, Liu JY (2011b) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833PubMedCrossRefGoogle Scholar
  78. Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013a) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539PubMedCrossRefGoogle Scholar
  79. Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B et al (2013b) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li Y, Zhang Y, Shi D, Liu X, Qin J, Ge Q et al (2013c) Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytol 200:1102–1115PubMedCrossRefGoogle Scholar
  81. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057PubMedGoogle Scholar
  82. Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol 196:427–440PubMedCrossRefGoogle Scholar
  83. Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465–469PubMedCrossRefPubMedCentralGoogle Scholar
  84. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal 52:133–146Google Scholar
  85. Liu D, Yu D (2009) MicroRNA (miR396) negatively regulates expression of ceramidase-like genes in Arabidopsis. Prog Nat Sci 19:781–785CrossRefGoogle Scholar
  86. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843PubMedPubMedCentralCrossRefGoogle Scholar
  87. Llave C, Kasschau KD, Rector MA, Carrington JC (2002a) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619PubMedPubMedCentralCrossRefGoogle Scholar
  88. Llave C, Xie Z, Kasschau KD, Carrington JC (2002b) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedCrossRefGoogle Scholar
  89. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lu XY, Huang XL (2008) Plant miRNAs and abiotic stress responses. Biochem Biophys Res Commun 368:458–462PubMedCrossRefGoogle Scholar
  91. Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive micro-RNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151PubMedCrossRefGoogle Scholar
  93. Lu W, Li J, Liu F, Gu J, Guo C, Xu L, Zhang H, Xiao K (2011) Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Front Agric China 5:413–422CrossRefGoogle Scholar
  94. Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L (2015) Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178–185PubMedCrossRefPubMedCentralGoogle Scholar
  95. Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47PubMedCrossRefPubMedCentralGoogle Scholar
  96. Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183PubMedPubMedCentralCrossRefGoogle Scholar
  97. Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870PubMedCrossRefPubMedCentralGoogle Scholar
  98. Meng Y, Shao C, Gou L, Jin Y, Chen M (2011) Construction of microRNA and microRNA*-mediated regulatory networks in plants. RNA Biol 8:1124–1148PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mette MF, van der Winden J, Matzke M, Matzke AJ (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mittal D, Mukherjee SK, Vasudevan M, Sanan-Mishra N (2013) Identification of tissue-preferential expression patterns of rice miRNAs. J Cell Biochem 114:2071–2081PubMedCrossRefPubMedCentralGoogle Scholar
  102. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  103. Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2009) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177PubMedCentralCrossRefGoogle Scholar
  104. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–443PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J:1–12Google Scholar
  106. Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T (2013) Boron stress responsive microRNAs and their targets in barley. PLoS One 8:e59543PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pandita D (2018) Plant miRNAs: micro structure and macro character. Res Rev J Agric Allied Sci 7:83–84Google Scholar
  108. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedPubMedCentralCrossRefGoogle Scholar
  109. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pasquinelli A, Reinhart B, Slack F, Maller B, Ruvkun G (2000) Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide C. elegans let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefPubMedCentralGoogle Scholar
  111. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Org Cult 105:233–242CrossRefGoogle Scholar
  112. Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428PubMedCrossRefPubMedCentralGoogle Scholar
  113. Qiao Y, Shi J, Zhai Y, Hou Y, Ma W (2015) Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proc Natl Acad Sci U S A 112:5850–5855PubMedPubMedCentralCrossRefGoogle Scholar
  114. Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893–1907PubMedCrossRefGoogle Scholar
  115. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedPubMedCentralCrossRefGoogle Scholar
  116. Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, Horvitz R, Ruvkun G (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403:901–906PubMedCrossRefGoogle Scholar
  117. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339PubMedCrossRefGoogle Scholar
  119. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012b) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 109:12817–12821PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B (2014) Methylation protects microRNAs from an AGO1-associated activity that uridylates 50 RNA fragments generated by AGO1cleavage. Proc Natl Acad Sci U S A 111:6365–6370PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rogers K, Chen X (2013) Biogenesis, turnover, mode of action of plant microRNAs. Plant Cell 25:2383–2399PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  123. Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR (2008) Interactions between the S-domain receptor kinases and at PUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol 147:2084–2095PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sanan-Mishra N, Kumar V, Sopory SK, Mukherjee SK (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genom 282:463–474CrossRefGoogle Scholar
  125. Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genom 284:477–488CrossRefGoogle Scholar
  126. Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233PubMedPubMedCentralCrossRefGoogle Scholar
  127. Song JJ, Smith SK, Hannon GJ, Joshua T (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437PubMedCrossRefPubMedCentralGoogle Scholar
  128. Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36PubMedCrossRefGoogle Scholar
  130. Sun G, Stewart CN, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7:e32017PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X et al (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16:197PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sunkar R, Kapoor A, Zhu J (2006) Posttranscriptional induction of two cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203PubMedCrossRefGoogle Scholar
  135. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  136. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedPubMedCentralCrossRefGoogle Scholar
  137. Trindade I, Capitao C, Dalmay T, Fevereiro MP, dos Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716PubMedCrossRefGoogle Scholar
  138. Vandenabeele S, Van-Der-Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van-Montagu M, Zabeau M, Inze D, Van-Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A 100:16113–16118PubMedPubMedCentralCrossRefGoogle Scholar
  139. Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197PubMedPubMedCentralCrossRefGoogle Scholar
  140. Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedCrossRefGoogle Scholar
  141. Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 18:132–137PubMedPubMedCentralCrossRefGoogle Scholar
  142. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  143. Wang B, Malik R, Nigg EA, Korner R (2008) Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis. Anal Chem 80:9526–9533PubMedCrossRefGoogle Scholar
  144. Wang T, Chen L, Zhao M, Tian Q, Zhang WH (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7:e48445PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wang S, Sun X, Hoshino Y, Yu Y, Jia B, Sun Z, Zhu Y (2014a) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 9:e91357PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H, Yin ZY, Kang ZS (2014b) MicroRNAS involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96PubMedCrossRefGoogle Scholar
  148. Wei L, Zhang D, Xiang F, Zhang Z (2009) Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170:979–989CrossRefGoogle Scholar
  149. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRefGoogle Scholar
  150. Wu X, Shi Y, Li J, Xu L, Fang Y, Li X, Qi Y (2013) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23:645–657PubMedPubMedCentralCrossRefGoogle Scholar
  151. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J (2012) OsTIR1 and OsAFB2 down regulation via OsmiR393 over expression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039PubMedPubMedCentralCrossRefGoogle Scholar
  152. Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804PubMedPubMedCentralCrossRefGoogle Scholar
  153. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123PubMedPubMedCentralCrossRefGoogle Scholar
  154. Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61PubMedPubMedCentralCrossRefGoogle Scholar
  155. Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Over expression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043PubMedCrossRefGoogle Scholar
  156. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  157. Yang L, Liu Z, Lu F, Dong A, Huang H (2006a) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850PubMedCrossRefGoogle Scholar
  158. Yang W, Chendrimada TP, Wang Q et al (2006b) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21PubMedCrossRefGoogle Scholar
  159. Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A 109:315–320PubMedCrossRefGoogle Scholar
  160. Yang CH, Li DY, Mao DH, Liu X, Ji CJ et al (2013) Over expression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218PubMedCrossRefGoogle Scholar
  161. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yu X, Wang H, Lu YZ, Ruiter M, Cariaso M, Prins M, Van TA, He YK (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038PubMedCrossRefGoogle Scholar
  163. Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W (2018) Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol. 18:52Google Scholar
  164. Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNAs biogenesis. Proc Natl Acad Sci U S A 109:18198–18203PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15PubMedCrossRefGoogle Scholar
  167. Zhang JF, Yuan LJ, Shao Y, Du W, Yan DW, Lu YT (2008) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell Environ 31:562–574PubMedCrossRefGoogle Scholar
  168. Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009a) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zhang J, Xu Y, Huan Q, Chong K (2009b) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409PubMedCrossRefGoogle Scholar
  171. Zhang S, Xie M, Ren G, Yu B (2013) CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci U S A 110:17588–17593PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM (2013a) miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater 15:204–211CrossRefGoogle Scholar
  173. Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, Shang Guan M, Wei C (2013b) PASmiR: a literature curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13:33PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhang S, Liu Y, Yu B (2014) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10:e1004841PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhang J, Zhang H , Srivastava AK, Pan Y, Bai J, Fang J, Shi H, Zhu JK (2018) Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant Physiology 176(3):2082–2094Google Scholar
  176. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590PubMedCrossRefGoogle Scholar
  177. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zhao X, Liu X, Guo C, Gu J, Xiao K (2013) Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J Plant Biochem Biotechnol 22:113–123CrossRefGoogle Scholar
  179. Zhao J, He Q, Chen G, Wang L, Jin B (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1213PubMedPubMedCentralGoogle Scholar
  180. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509PubMedCrossRefGoogle Scholar
  181. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168CrossRefGoogle Scholar
  182. Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R (2012) Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 39:8645–8654PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Deepu Pandita
    • 1
  1. 1.Government Department of School EducationJammuIndia

Personalised recommendations