Surface Modification of Magnetic Nanoparticles in Biomedicine

  • Viroj Wiwanitkit


Nanobiotechnology is proven for its advantage in several applications including applied biomedicine. The application of nanobiotechnology is possible in many aims such as drug and diagnostic test developments. Many new nanoparticles are developed and applied at present to serve those purposes. In this specific chapter, the author will focus on the surface modification of magnetic nanoparticles which pose specific properties of nanoparticle and magnetic property.

The application of surface modification of magnetic nanoparticles for pharmaceutical process as well as diagnostic test development will be summarized and presented in this article. Summary on important reports on the mentioned specific topics is also given in this article.


Nanobiotechnology Surface Modification Magnetic Nanoparticle 


Conflict of Interest



  1. 1.
    Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Effect of gold nanoparticle on the microscopic morphology of white blood cell. Cytopathology, 20(2), 109–110.CrossRefGoogle Scholar
  2. 2.
    Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Identification of gold nanoparticle in lymphocytes: A confirmation of direct intracellular penetration effect. Turkish Journal of Haematology, 26(1), 29–30.PubMedGoogle Scholar
  3. 3.
    Sereemaspun, A., Rojanathanes, R., & Wiwanitkit, V. (2008). Effect of gold nanoparticle on renal cell: An implication for exposure risk. Renal Failure, 30(3), 323–325.CrossRefGoogle Scholar
  4. 4.
    Brigger, I., Dubernet, C., & Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54(5), 631–651.CrossRefGoogle Scholar
  5. 5.
    Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2006). Nanodiagnostics: A new frontier for clinical laboratory medicine. Clinical Chemistry, 52(7), 1238–1246.CrossRefGoogle Scholar
  6. 6.
    Jain, K. K. (2003). Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics, 3(2), 153–161.CrossRefGoogle Scholar
  7. 7.
    Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., et al. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468(3), 463–470.CrossRefGoogle Scholar
  8. 8.
    Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. Biotech, 8(6), 279.Google Scholar
  9. 9.
    Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A., & Mahmoudi, M. (2014). Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opinion on Drug Delivery, 11(9), 1449–1470.CrossRefGoogle Scholar
  10. 10.
    Strehl, C., Maurizi, L., Gaber, T., Hoff, P., Broschard, T., Poole, A. R., et al. (2016). Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. International Journal of Nanomedicine, 11, 5883–5896.CrossRefGoogle Scholar
  11. 11.
    Bonilla, A. M., & Gonzalez, P. H. (2017). Hybrid polymeric-magnetic nanoparticles in cancer treatments. Current Pharmaceutical Design, 23(35), 5392–5402.PubMedGoogle Scholar
  12. 12.
    Sun, W., Mignani, S., Shen, M., & Shi, X. (2016). Dendrimer-based magnetic iron oxide nanoparticles: Their synthesis and biomedical applications. Drug Discovery Today, 21(12), 1873–1885.CrossRefGoogle Scholar
  13. 13.
    He, Y., Zhang, L., Zhu, D., & Song, C. (2014). Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. International Journal of Nanomedicine, 9, 4055–4066.CrossRefGoogle Scholar
  14. 14.
    Singh, H., Du, J., Singh, P., Mavlonov, G. T., & Yi, T. H. (2018). Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. Journal of Photochemistry and Photobiology. B, 185, 100–110.CrossRefGoogle Scholar
  15. 15.
    Miranda, M. S., Rodrigues, M. T., Domingues, R. M. A., Costa, R. R., Paz, E., Rodríguez-Abreu, C., et al. (2018). Development of inhalable superparamagnetic iron oxide nanoparticles (SPIONs) in microparticulate system for antituberculosis drug delivery. Advanced Healthcare Materials, 23, e1800124. CrossRefGoogle Scholar
  16. 16.
    Silva, M. O. D., Carneiro, M. L. B., Siqueira, J. L. N., Báo, S. N., & Souza, A. R. (2018). Development of a promising antitumor compound based on rhodium(II) succinate associated with iron oxide nanoparticles coated with lauric acid/albumin hybrid: synthesis, colloidal stability and cytotoxic effect in breast carcinoma cells. Journal of Nanoscience and Nanotechnology, 18(6), 3832–3843.CrossRefGoogle Scholar
  17. 17.
    Muzio, G., Miola, M., Ferraris, S., Maggiora, M., Bertone, E., Puccinelli, M. P., et al. (2017). Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: Effect on tumor cell growth and viability. Materials Science & Engineering. C, Materials for Biological Applications, 76, 439–447.CrossRefGoogle Scholar
  18. 18.
    Klein, S., Kızaloğlu, M., Portilla, L., Park, H., Rejek, T., Hümmer, J., et al. (2018). Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ROS formation enhancer in radiation cancer therapy. Small, 14(21), e1704111.CrossRefGoogle Scholar
  19. 19.
    Zhang, Z. Q., & Song, S. C. (2017). Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials, 132, 16–27.CrossRefGoogle Scholar
  20. 20.
    Babincová, M., Vrbovská, H., Sourivong, P., Babinec, P., & Durdík, Š. (2018). Application of albumin-embedded magnetic nanoheaters for release of etoposide in integrated chemotherapy and hyperthermia of U87-MG glioma cells. Anticancer Research, 38(5), 2683–2690.PubMedGoogle Scholar
  21. 21.
    Do, T. D., Ul Amin, F., Noh, Y., Kim, M. O., & Yoon, J. (2016). Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. Journal of Biomedical Nanotechnology, 12(3), 569–574.CrossRefGoogle Scholar
  22. 22.
    Williams, J. P., Southern, P., Lissina, A., Christian, H. C., Sewell, A. K., Phillips, R., et al. (2013). Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. International Journal of Nanomedicine, 8, 2543–2554.CrossRefGoogle Scholar
  23. 23.
    de Toledo, L. A. S., Rosseto, H. C., & Bruschi, M. L. (2018). Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharmaceutical Development and Technology, 23(4), 316–323.CrossRefGoogle Scholar
  24. 24.
    Magro, M., Baratella, D., Bonaiuto, E., de A Roger, J., & Vianello, F. (2018). New perspectives on biomedical applications of iron oxide nanoparticles. Current Medicinal Chemistry, 25(4), 540–555.CrossRefGoogle Scholar
  25. 25.
    Seth, A., Park, H. S., & Hong, K. S. (2017). Current perspective on in vivo molecular imaging of immune cells. Molecules, 22(6), E881. Scholar
  26. 26.
    Belyanina, I., Kolovskaya, O., Zamay, S., Gargaun, A., Zamay, T., & Kichkailo, A. (2017). Targeted magnetic nanotheranostics of cancer. Molecules, 22(6), E975.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Viroj Wiwanitkit
    • 1
    • 2
    • 3
    • 4
  1. 1.DY Patil UniversityPuneIndia
  2. 2.Joseph Ayobabalola UniversityIlara-MokinNigeria
  3. 3.Faculty of MedicineUniversity of NisNisSerbia
  4. 4.Hainan Medical UniversityHaikouChina

Personalised recommendations