Advertisement

Surface Modification and Bioconjugation of Nanoparticles for MRI Technology

  • M. Azam AliEmail author
  • Mohammad Tajul Islam
Chapter

Abstract

Nanomaterials (NPs) with precise biological functions have considerable potential for use in biomedical applications. Surface modification is one of the effective routes to impart such desired and precise biological functions to NPs. Introduction of various reactive functional groups on the surface of NPs are required to conjugate a spectrum of contrast agents (CAs), for the targeted imaging such as magnetic resonance imaging (MRI). Current state in surface modification of NPs for preparing CAs of MRI is summarized in this chapter. Chemistries involved in the bioconjugation and surface modification are discussed. Chemical and bioconjugate reactions to transform the surface of NPs such as silica NPs, gold NPs, and gadolinium NPs are highlighted. Coating is another important approach to enhance the functionalities of CAs for MRI application, therefore, light is thrown on the coating mechanism of organic polymers including dextran, chitosan, and copolymers.

Keywords

Surface modification Bioconjugation Nanoparticles Contrast agent Magnetic resonance image 

References

  1. 1.
    Smith, B. R., & Gambhir, S. S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117(3), 901–986.  https://doi.org/10.1021/acs.chemrev.6b00073.Google Scholar
  2. 2.
    Na, H. B., & Hyeon, T. (2009). Nanostructured T1 MRI contrast agents. Journal of Materials Chemistry, 19(35), 6267–6273.  https://doi.org/10.1039/B902685A.Google Scholar
  3. 3.
    Cao, Y., Xu, L., Kuang, Y., Xiong, D., & Pei, R. (2017). Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B, 5(19), 3431–3461.  https://doi.org/10.1039/C7TB00382J.Google Scholar
  4. 4.
    Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41(7), 2575–2589.  https://doi.org/10.1039/C1CS15248C.Google Scholar
  5. 5.
    Hahn, M. A., Singh, A. K., Sharma, P., Brown, S. C., & Moudgil, B. M. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Analytical and Bioanalytical Chemistry, 399(1), 3–27.  https://doi.org/10.1007/s00216-010-4207-5.Google Scholar
  6. 6.
    Merbach, A. S., Helm, L., & Toth, E. (2013). The chemistry of contrast agents in medical magnetic resonance imaging. Hoboken, NJ: Wiley.Google Scholar
  7. 7.
    Chan, K. W.-Y., & Wong, W.-T. (2007). Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coordination Chemistry Reviews, 251(17), 2428–2451.  https://doi.org/10.1016/j.ccr.2007.04.018.Google Scholar
  8. 8.
    Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418.  https://doi.org/10.1038/nbt1159.Google Scholar
  9. 9.
    Veiseh, O., Kievit, F., Ellenbogen, R. G., & Zhang, M. (2011). Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine. Advanced Drug Delivery Reviews, 63(8), 582–596.  https://doi.org/10.1016/j.addr.2011.01.010.Google Scholar
  10. 10.
    Schellenberger, E. A., Weissleder, R., & Josephson, L. (2004b). Optimal modification of annexin V with fluorescent dyes. Chembiochem: A European Journal of Chemical Biology, 5(3), 271–274.  https://doi.org/10.1002/cbic.200300741.Google Scholar
  11. 11.
    Lam, T., Avti, P. K., Pouliot, P., Maafi, F., Tardif, J. C., Rheaume, E., Lesage, F., & Kakkar, A. (2016). Fabricating water dispersible superparamagnetic iron oxide nanoparticles for biomedical applications through ligand exchange and direct conjugation. Nanomaterials, 6(6), E100.  https://doi.org/10.3390/nano6060100.Google Scholar
  12. 12.
    Sharpless, K. B., Finn, M. G., & Kolb, H. C. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie (International ed in English), 40(11), 2004–2021.  https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5.Google Scholar
  13. 13.
    Lutz, J. F., & Zarafshani, Z. (2008). Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Advanced Drug Delivery Reviews, 60(9), 958–970.  https://doi.org/10.1016/j.addr.2008.02.004.Google Scholar
  14. 14.
    Hein, C. D., Liu, X. M., & Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research, 25(10), 2216–2230.  https://doi.org/10.1007/s11095-008-9616-1.Google Scholar
  15. 15.
    Sun, E. Y., Josephson, L., & Weissleder, R. (2006). “Clickable” nanoparticles for targeted imaging. Molecular Imaging, 5(2), 122–128.Google Scholar
  16. 16.
    Maltzahn, v G., Ren, Y., Park, J.-H., Min, D.-H., Kotamraju, V. R., Jayakumar, J., Fogal, V., Sailor, M. J., Ruoslahti, E., & Bhatia, S. N. (2008). In vivo tumor cell targeting with “Click” nanoparticles. Bioconjugate Chemistry, 19(8), 1570–1578.  https://doi.org/10.1021/bc800077y.Google Scholar
  17. 17.
    Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., Bhattarai, N., Ellenbogen, R., Sze, R., Hallahan, A., Olson, J., & Zhang, M. (2005). Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Letters, 5(6), 1003–1008.  https://doi.org/10.1021/nl0502569.Google Scholar
  18. 18.
    Conroy, S., Omid, V., Jonathan, G., Chen, F., Stacey, H., Donghoon, L., Raymond, S., Richard, G. E., Jim, O., & Miqin, Z. (2008). In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small, 4(3), 372–379.  https://doi.org/10.1002/smll.200700784.Google Scholar
  19. 19.
    Medarova, Z., Pham, W., Farrar, C., Petkova, V., & Moore, A. (2007). In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 13, 372.  https://doi.org/10.1038/nm1486.Google Scholar
  20. 20.
    Högemann, D., Josephson, L., Weissleder, R., & Basilion, J. P. (2000). Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chemistry, 11(6), 941–946.  https://doi.org/10.1021/bc000079x.Google Scholar
  21. 21.
    Schellenberger, E. A., Sosnovik, D., Weissleder, R., & Josephson, L. (2004a). Magneto/optical annexin V, a multimodal protein. Bioconjugate Chemistry, 15(5), 1062–1067.  https://doi.org/10.1021/bc049905i.Google Scholar
  22. 22.
    Kohler, N., Fryxell, G. E., & Zhang, M. (2004). A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of the American Chemical Society, 126(23), 7206–7211.  https://doi.org/10.1021/ja049195r.Google Scholar
  23. 23.
    Wang, A. Z., Vaishali, B., Christophoros, V. C., Frank, G., Frank, A., Liangfang, Z., Mariam, S., Kai, Y., Michael, J. C., Robert, L., Philip, W. K., Neil, H. B., Sangyong, J., & Omid, C. F. (2008). Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 3(9), 1311–1315.  https://doi.org/10.1002/cmdc.200800091.Google Scholar
  24. 24.
    Steitz, B., Hofmann, H., Kamau, S. W., Hassa, P. O., Hottiger, M. O., von Rechenberg, B., Hofmann-Amtenbrink, M., & Petri-Fink, A. (2007). Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. Journal of Magnetism and Magnetic Materials, 311(1), 300–305.  https://doi.org/10.1016/j.jmmm.2006.10.1194.Google Scholar
  25. 25.
    Park, I.-K., Ng, C.-P., Wang, J., Chu, B., Yuan, C., Zhang, S., & Pun, S. H. (2008). Determination of nanoparticle vehicle unpackaging by MR imaging of a T(2) magnetic relaxation switch. Biomaterials, 29(6), 724–732.  https://doi.org/10.1016/j.biomaterials.2007.10.018.Google Scholar
  26. 26.
    Eyk, S., Jörg, S., Chris, R., Liset, U., Wolfdietrich, M., Matthias, T., & Bernd, H. (2008). Linking proteins with anionic nanoparticles via protamine: Ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small, 4(2), 225–230.  https://doi.org/10.1002/smll.200700847.Google Scholar
  27. 27.
    Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., & Labhasetwar, V. (2008). Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 29(29), 4012–4021.  https://doi.org/10.1016/j.biomaterials.2008.07.004.Google Scholar
  28. 28.
    Pan, D., Caruthers, S. D., Hu, G., Senpan, A., Scott, M. J., Gaffney, P. J., Wickline, S. A., & Lanza, G. M. (2008). Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. Journal of the American Chemical Society, 130(29), 9186–9187.  https://doi.org/10.1021/ja801482d.Google Scholar
  29. 29.
    Gunn, J., Wallen, H., Veiseh, O., Sun, C., Fang, C., Cao, J., Yee, C., & Zhang, M. (2008). A multimodal targeting nanoparticle for selectively labeling T cells. Small, 4(6), 712–715.  https://doi.org/10.1002/smll.200701103.Google Scholar
  30. 30.
    Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862–3875.  https://doi.org/10.1039/C3CS35405A.Google Scholar
  31. 31.
    Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679–3698.  https://doi.org/10.1039/C2CS15308D.Google Scholar
  32. 32.
    Tae-Jong, Y., Nam, Y. K., Eunha, K., Sung, K. J., Geol, K. B., Sang-Hyun, Y., Byeong-Hyeok, S., Myung-Haing, C., Jin-Kyu, L., & Bum, P. S. (2006). Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small, 2(2), 209–215.  https://doi.org/10.1002/smll.200500360.Google Scholar
  33. 33.
    Tallury, P., Payton, K., & Santra, S. (2008). Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine, 3(4), 579–592.  https://doi.org/10.2217/17435889.3.4.579.Google Scholar
  34. 34.
    Koole, R., van Schooneveld, M. M., Hilhorst, J., Castermans, K., Cormode, D. P., Strijkers, G. J., de Mello Donegá, C., Vanmaekelbergh, D., Griffioen, A. W., Nicolay, K., Fayad, Z. A., Meijerink, A., & Mulder, W. J. M. (2008). Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: A new contrast agent platform for multimodality imaging. Bioconjugate Chemistry, 19(12), 2471–2479.  https://doi.org/10.1021/bc800368x.Google Scholar
  35. 35.
    Wang, F., Chen, X., Zhao, Z., Tang, S., Huang, X., Lin, C., Cai, C., & Zheng, N. (2011). Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. Journal of Materials Chemistry, 21(30), 11244–11252.  https://doi.org/10.1039/C1JM10329F.Google Scholar
  36. 36.
    Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408–3413.  https://doi.org/10.1021/la00036a014.Google Scholar
  37. 37.
    Haynes, W. M. (2014). CRC handbook of chemistry and physics. Boca Raton, FL: CRC.Google Scholar
  38. 38.
    Hou, W., Dasog, M., & Scott, R. W. J. (2009). Probing the relative stability of thiolate- and dithiolate-protected au monolayer-protected clusters. Langmuir, 25(22), 12954–12961.  https://doi.org/10.1021/la9018053.Google Scholar
  39. 39.
    Roux, S., Garcia, B., Bridot, J.-L., Salomé, M., Marquette, C., Lemelle, L., Gillet, P., Blum, L., Perriat, P., & Tillement, O. (2005). Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir, 21(6), 2526–2536.  https://doi.org/10.1021/la048082i.Google Scholar
  40. 40.
    Pérez-Rentero, S., Grijalvo, S., Peñuelas, G., Fàbrega, C., & Eritja, R. (2014). Thioctic acid derivatives as building blocks to incorporate DNA oligonucleotides onto gold nanoparticles. Molecules, 19(7), 10495.  https://doi.org/10.3390/molecules190710495.Google Scholar
  41. 41.
    Oh, E., Susumu, K., Mäkinen, A. J., Deschamps, J. R., Huston, A. L., & Medintz, I. L. (2013). Colloidal stability of gold nanoparticles coated with multithiol-poly(ethylene glycol) ligands: Importance of structural constraints of the sulfur anchoring groups. The Journal of Physical Chemistry C, 117(37), 18947–18956.  https://doi.org/10.1021/jp405265u.Google Scholar
  42. 42.
    Gehan, H., Fillaud, L., Felidj, N., Aubard, J., Lang, P., Chehimi, M. M., & Mangeney, C. (2010). A general approach combining diazonium salts and click chemistries for gold surface functionalization by nanoparticle assemblies. Langmuir, 26(6), 3975–3980.  https://doi.org/10.1021/la9033436.Google Scholar
  43. 43.
    WangWang, L. J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Lin, Y., Kim, N., Wang, J. Q., & Zhong, C.-J. (2005). Monodispersed core–shell Fe3O4@Au nanoparticles. The Journal of Physical Chemistry B, 109(46), 21593–21601.  https://doi.org/10.1021/jp0543429.Google Scholar
  44. 44.
    Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., Liu, J., Wei, Y., & Li, Y. (2007). Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 1(4), 293–298.  https://doi.org/10.1021/nn700189h.Google Scholar
  45. 45.
    Fraum, T. J., Ludwig, D. R., Bashir, M. R., & Fowler, K. J. (2017). Gadolinium-based contrast agents: A comprehensive risk assessment. Journal of Magnetic Resonance Imaging, 46(2), 338–353.  https://doi.org/10.1002/jmri.25625.Google Scholar
  46. 46.
    Zhang, G., Zhang, R., Wen, X., Li, L., & Li, C. (2008). Micelles based on biodegradable poly(l-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules, 9(1), 36–42.  https://doi.org/10.1021/bm700713p.Google Scholar
  47. 47.
    Shiraishi, K., Kawano, K., Minowa, T., Maitani, Y., & Yokoyama, M. (2009). Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI contrast agents. Journal of Controlled Release, 136(1), 14–20.  https://doi.org/10.1016/j.jconrel.2009.01.010.Google Scholar
  48. 48.
    Chan, M., Lux, J., Nishimura, T., Akiyoshi, K., & Almutairi, A. (2015). Long-lasting and efficient tumor imaging using a high relaxivity polysaccharide nanogel magnetic resonance imaging contrast agent. Biomacromolecules, 16(9), 2964–2971.  https://doi.org/10.1021/acs.biomac.5b00867.Google Scholar
  49. 49.
    Guo, C., Hu, J., Bains, A., Pan, D., Luo, K., Li, N., & Gu, Z. (2016). The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. Journal of Materials Chemistry B, 4(13), 2322–2331.  https://doi.org/10.1039/C5TB02709H.Google Scholar
  50. 50.
    Zhang, H., Li, L., Liu, X. L., Jiao, J., Ng, C.-T., Yi, J. B., Luo, Y. E., Bay, B.-H., Zhao, L. Y., Peng, M. L., Gu, N., & Fan, H. M. (2017). Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano, 11(4), 3614–3631.  https://doi.org/10.1021/acsnano.6b07684.Google Scholar
  51. 51.
    Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles. Journal of the American Chemical Society, 128(33), 10676–10677.  https://doi.org/10.1021/ja063969h.Google Scholar
  52. 52.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110.  https://doi.org/10.1021/cr068445e.Google Scholar
  53. 53.
    LaConte, L. E. W., Nitin, N., Zurkiya, O., Caruntu, D., O’Connor, C. J., Hu, X., & Bao, G. (2007). Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. Journal of Magnetic Resonance Imaging, 26(6), 1634–1641.  https://doi.org/10.1002/jmri.21194.Google Scholar
  54. 54.
    Duan, H., Kuang, M., Wang, X., Wang, Y. A., Mao, H., & Nie, S. (2008). Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: New insights into spin disorder and proton relaxivity. The Journal of Physical Chemistry C, 112(22), 8127–8131.  https://doi.org/10.1021/jp8029083.Google Scholar
  55. 55.
    Gillich, T., Acikgöz, C., Isa, L., Schlüter, A. D., Spencer, N. D., & Textor, M. (2013). PEG-stabilized core–shell nanoparticles: Impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano, 7(1), 316–329.  https://doi.org/10.1021/nn304045q.Google Scholar
  56. 56.
    Lalatonne, Y., Paris, C., Serfaty, J. M., Weinmann, P., Lecouvey, M., & Motte, L. (2008). Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: A platform towards diagnosis and therapy. Chemical Communications, (22), 2553–2555.  https://doi.org/10.1039/B801911H.
  57. 57.
    Barrera, C., Herrera, A. P., Bezares, N., Fachini, E., Olayo-Valles, R., Hinestroza, J. P., & Rinaldi, C. (2012). Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 377(1), 40–50.  https://doi.org/10.1016/j.jcis.2012.03.050.Google Scholar
  58. 58.
    Biju, V., Itoh, T., & Ishikawa, M. (2010). Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews, 39(8), 3031–3056.  https://doi.org/10.1039/B926512K.Google Scholar
  59. 59.
    Bilan, R., Fleury, F., Nabiev, I., & Sukhanova, A. (2015). Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjugate Chemistry, 26(4), 609–624.  https://doi.org/10.1021/acs.bioconjchem.5b00069.Google Scholar
  60. 60.
    Banerjee, A., Grazon, C., Nadal, B., Pons, T., Krishnan, Y., & Dubertret, B. (2015). Fast, efficient, and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconjugate Chemistry, 26(8), 1582–1589.  https://doi.org/10.1021/acs.bioconjchem.5b00221.Google Scholar
  61. 61.
    Paquet, C., Ryan, S., Zou, S., Kell, A., Tanha, J., Hulse, J., Tay, L.-L., & Simard, B. (2012). Multifunctional nanoprobes for pathogen-selective capture and detection. Chemical Communications, 48(4), 561–563.  https://doi.org/10.1039/C1CC16245D.Google Scholar
  62. 62.
    Hong, G., Diao, S., Antaris, A. L., & Dai, H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 115(19), 10816–10906.  https://doi.org/10.1021/acs.chemrev.5b00008.Google Scholar
  63. 63.
    Karousis, N., Suarez-Martinez, I., Ewels, C. P., & Tagmatarchis, N. (2016). Structure, properties, functionalization, and applications of carbon nanohorns. Chemical Reviews, 116(8), 4850–4883.  https://doi.org/10.1021/acs.chemrev.5b00611.Google Scholar
  64. 64.
    Marco, F., Roberto, M., Lyn, M., Kevin, F., Valentina, S., Giacomo, C., Luis, E., Eoin, M. S., & Silvia, G. (2015). Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry – A European Journal, 21(52), 19071–19080.  https://doi.org/10.1002/chem.201503166.Google Scholar
  65. 65.
    Biju, V. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 43(3), 744–764.  https://doi.org/10.1039/C3CS60273G.Google Scholar
  66. 66.
    Amstad, E., Zurcher, S., Mashaghi, A., Wong, J. Y., Textor, M., & Reimhult, E. (2009). Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small, 5(11), 1334–1342.  https://doi.org/10.1002/smll.200801328.Google Scholar
  67. 67.
    Mahato, R. I. (2004). Biomaterials for delivery and targeting of proteins and nucleic acids. Boca Raton, FL: CRC.Google Scholar
  68. 68.
    Fuertges, F., & Abuchowski, A. (1990). The clinical efficacy of poly(ethylene glycol)-modified proteins. Journal of Controlled Release, 11(1), 139–148.  https://doi.org/10.1016/0168-3659(90)90127-F.Google Scholar
  69. 69.
    Xie, J., Xu, C., Kohler, N., Hou, Y., & Sun, S. (2007). Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials, 19(20), 3163–3166.  https://doi.org/10.1002/adma.200701975.Google Scholar
  70. 70.
    Harris, J. M., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2, 214.  https://doi.org/10.1038/nrd1033.Google Scholar
  71. 71.
    Chen, X., Zhang, W., Laird, J., Hazen, S. L., & Salomon, R. G. (2008). Polyunsaturated phospholipids promote the oxidation and fragmentation of γ-hydroxyalkenals: Formation and reactions of oxidatively truncated ether phospholipids. Journal of Lipid Research, 49(4), 832–846.  https://doi.org/10.1194/jlr.M700598-JLR200.Google Scholar
  72. 72.
    Papisov, M. I., Bogdanov, A., Schaffer, B., Nossiff, N., Shen, T., Weissleder, R., & Brady, T. J. (1993). Colloidal magnetic resonance contrast agents: Effect of particle surface on biodistribution. Journal of Magnetism and Magnetic Materials, 122(1), 383–386.  https://doi.org/10.1016/0304-8853(93)91115-N.Google Scholar
  73. 73.
    Lutz, J.-F., Stiller, S., Hoth, A., Kaufner, L., Pison, U., & Cartier, R. (2006). One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules, 7(11), 3132–3138.  https://doi.org/10.1021/bm0607527.Google Scholar
  74. 74.
    Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013). Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8), 595–615.  https://doi.org/10.7150/thno.5366.Google Scholar
  75. 75.
    Ma, Y., Tong, S., Bao, G., Gao, C., & Dai, Z. (2013). Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 34(31), 7706–7714.  https://doi.org/10.1016/j.biomaterials.2013.07.007.Google Scholar
  76. 76.
    Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreño, T., & Serna, C. J. (2006). Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of Magnetic Materials, 16(5), 403–482.Google Scholar
  77. 77.
    Weissleder, R., Elizondo, G., Wittenberg, J., Lee, A. S., Josephson, L., & Brady, T. J. (1990). Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 175(2), 494–498.  https://doi.org/10.1148/radiology.175.2.2326475.Google Scholar
  78. 78.
    Molday, R. S., & Mackenzie, D. (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods, 52(3), 353–367.  https://doi.org/10.1016/0022-1759(82)90007-2.Google Scholar
  79. 79.
    Josephson, L., Tung, C.-H., Moore, A., & Weissleder, R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry, 10(2), 186–191.  https://doi.org/10.1021/bc980125h.Google Scholar
  80. 80.
    Tassa, C., Shaw, S. Y., & Weissleder, R. (2011). Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 44(10), 842–852.  https://doi.org/10.1021/ar200084x.Google Scholar
  81. 81.
    Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Crosslinked iron oxides (CLIO): A new platform for the development of targeted MR contrast agents. Academic Radiology, 9(Suppl 2), S304–S306.Google Scholar
  82. 82.
    McCarthy, J. R., & Weissleder, R. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews, 60(11), 1241–1251.  https://doi.org/10.1016/j.addr.2008.03.014.Google Scholar
  83. 83.
    Mornet, S., Portier, J., & Duguet, E. (2005). A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. Journal of Magnetism and Magnetic Materials, 293(1), 127–134.  https://doi.org/10.1016/j.jmmm.2005.01.053.Google Scholar
  84. 84.
    Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104(12), 6017–6084.  https://doi.org/10.1021/cr030441b.Google Scholar
  85. 85.
    Janes, K. A., Calvo, P., & Alonso, M. J. (2001). Polysaccharide colloidal particles as delivery systems for macromolecules. Advanced Drug Delivery Reviews, 47(1), 83–97.  https://doi.org/10.1016/S0169-409X(00)00123-X.Google Scholar
  86. 86.
    Bhattarai, S. R., Kim, S. Y., Jang, K. Y., Lee, K. C., Yi, H. K., Lee, D. Y., Kim, H. Y., & Hwang, P. H. (2008). Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. Journal of Virological Methods, 147(2), 213–218.  https://doi.org/10.1016/j.jviromet.2007.08.028.Google Scholar
  87. 87.
    Hee Kim, E., Sook Lee, H., Kook Kwak, B., & Kim, B.-K. (2005). Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 289, 328–330.  https://doi.org/10.1016/j.jmmm.2004.11.093.Google Scholar
  88. 88.
    Kim, M.-J., Jang, D.-H., Lee, Y.-I., Jung, H. S., Lee, H.-J., & Choa, Y.-H. (2011). Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 11(1), 889–893.  https://doi.org/10.1166/jnn.2011.3267.Google Scholar
  89. 89.
    Martina, M.-S., Fortin, J.-P., Ménager, C., Clément, O., Barratt, G., Grabielle-Madelmont, C., Gazeau, F., Cabuil, V., & Lesieur, S. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society, 127(30), 10676–10685.  https://doi.org/10.1021/ja0516460.Google Scholar
  90. 90.
    Yang, J., Lee, T.-I., Lee, J., Lim, E.-K., Hyung, W., Lee, C.-H., Song, Y. J., Suh, J.-S., Yoon, H.-G., Huh, Y.-M., & Haam, S. (2007). Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid. Chemistry of Materials, 19(16), 3870–3876.  https://doi.org/10.1021/cm070495s.Google Scholar
  91. 91.
    De Cuyper, M., & Joniau, M. (1988). Magnetoliposomes. European Biophysics Journal, 15(5), 311–319.  https://doi.org/10.1007/bf00256482.Google Scholar
  92. 92.
    Mulder, W. J. M., Strijkers, G. J., van Tilborg, G. A. F., Griffioen, A. W., & Nicolay, K. (2006). Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR in Biomedicine, 19(1), 142–164.  https://doi.org/10.1002/nbm.1011.Google Scholar
  93. 93.
    Dagata, J. A., Farkas, N., Dennis, C. L., Shull, R. D., Hackley, V. A., Yang, C., Pirollo, K. F., & Chang, E. H. (2008). Physical characterization methods for iron oxide contrast agents encapsulated within a targeted liposome-based delivery system. Nanotechnology, 19(30), 305101.Google Scholar
  94. 94.
    Veiseh, O., Kievit, F. M., Gunn, J. W., Ratner, B. D., & Zhang, M. (2009). A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 30(4), 649–657.  https://doi.org/10.1016/j.biomaterials.2008.10.003.Google Scholar
  95. 95.
    Kievit, F. M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J. W., Lee, D., Ellenbogen, R. G., Olson, J. M., & Zhang, M. (2009). PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: Synthesis, complexation, and transfection. Advanced Functional Materials, 19(14), 2244–2251.  https://doi.org/10.1002/adfm.200801844.Google Scholar
  96. 96.
    Guo, M., Yan, Y., Zhang, H., Yan, H., Cao, Y., Liu, K., Wan, S., Huang, J., & Yue, W. (2008). Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery. Journal of Materials Chemistry, 18(42), 5104–5112.  https://doi.org/10.1039/B810061F.Google Scholar
  97. 97.
    Thünemann, A. F., Schütt, D., Kaufner, L., Pison, U., & Möhwald, H. (2006). Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir, 22(5), 2351–2357.  https://doi.org/10.1021/la052990d.Google Scholar
  98. 98.
    Bulte, J. W. M., de Cuyper, M., Despres, D., & Frank, J. A. (1999). Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. Journal of Magnetic Resonance Imaging, 9(2), 329–335.  https://doi.org/10.1002/(SICI)1522-2586(199902)9:2<329::AID-JMRI27>3.0.CO;2-Z.Google Scholar
  99. 99.
    Xiang, J. J., Tang, J. Q., Zhu, S. G., Nie, X. M., Lu, H. B., Shen, S. R., Li, X. L., Tang, K., Zhou, M., & Li, G. Y. (2003). IONP-PLL: A novel non-viral vector for efficient gene delivery. The Journal of Gene Medicine, 5(9), 803–817.  https://doi.org/10.1002/jgm.419.Google Scholar
  100. 100.
    Nicollay, K., Strijkers, G. and Grull, H. (2013). Gd-Containing Nanoparticles as MRI Contrast Agents. In The Chemistryof Contrast Agents in Medical Magnetic Resonance Imaging (eds A. Merbach, L. Helm and E. Toth). https://doi.org/10.1002/9781118503652.ch11.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Bioengineering and Nanomedicine, Department of Food Science, Division of SciencesUniversity of OtagoDunedinNew Zealand
  2. 2.Centre for Materials Science and TechnologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations