Pathogenesis of Fungal Infections

  • Chandrasekhar Srinivasamurthy Banushree
  • Neriyana Sannappa Madhusudhan


Invasive fungal infections can cause significant morbidity and mortality as they are more difficult to treat. Understanding of the pathogenesis of fungal infections can aid in the prevention and management of the disease. Over a period of time, human beings have become a substrate for fungi. Apart from dysfunctional immune system of host, fungi are capable of tolerating high temperature and invading the human host tissue barrier to parasitize humans. Various immunoregulatory mechanisms determine the outcome of exposure to fungal pathogens. The following discussion intends to highlight the pathogenesis of fungal infections with special reference to central nervous system in humans.


Central nervous system Fungal infections Genetic factors Immune system Immunoregulation Pathogenesis Predisposing conditions 


ALS proteins

Agglutinin-like sequence proteins


Caspase recruitment domain-containing protein 9


Cluster of differentiation


C-type lectin receptors


Central nervous system


Complement receptor


Cytotoxic T lymphocyte-associated protein 4


Dendritic cell


Deoxyribonucleic acid


Epithelial cell


Epithelial adhesin gene


Human immunodeficiency virus


Heat shock protein


Hyphally regulated protein gene






Immune reconstitution inflammatory syndrome


Mannose receptors


Natural killer


Pathogen-associated molecular patterns


Programmed cell death protein-1


Pattern recognition receptors


Reactive oxygen intermediates


Secreted aspartyl proteinases


Thymus helper


Telomere-associated gene


Toll-like receptor


Tumor necrosis factor α

Treg cells

Regulatory T cells


Yeast-form wall protein


  1. de Almeida SM. Central nervous system paracoccidioidomycosis: an overview. Braz J Infect Dis. 2005;9:126–33.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anand VK, Alemar G, Griswold JA Jr. Intracranial complications of mucormycosis: an experimental model and clinical review. Laryngoscope. 1992;102:656–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aristizabal BH, Clemons KV, Cock AM, Restrepo A, Stevens DA. Experimental Paracoccidioides brasiliensis infection in mice: influence of the hormonal status of the host on tissue responses. Med Mycol. 2002;40:169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, et al. The contribution of the Toll-like receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;172(5):3059–69.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun. 2004;72:4731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Breneman E, Colford JM Jr. Aspergillosis of the CNS presenting as a aseptic meningitis. Clin Infect Dis. 1992;15:737–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.CrossRefGoogle Scholar
  8. Byrnes I, Edmond J, Bildfell RJ, Frank SA, Mitchell TG, Marr KA, et al. Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the pacific northwest in the United States. J Infect Dis. 2009;199(7):1081–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Colombo AL, Tobón A, Restrepo A, Queiroz-Telles F, Nucci M. Epidemiology of endemic systemic fungal infections in Latin America. Med Mycol. 2011;49(8):785–98.PubMedPubMedCentralGoogle Scholar
  10. Dadiee P, Hashemizadeh Z. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res. 2014;139(2):195–204.Google Scholar
  11. Davis LE. Fungal infections of the central nervous system. Neurol Clin. 1999;17:761–81.PubMedCrossRefPubMedCentralGoogle Scholar
  12. van de Veerdonk FL, Netea MG. T-cell subsets and antifungal host defenses. Curr Fungal Infect Rep. 2010;4:238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Drewniak A, Gazendam RP, Tool ATJ, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–92.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14(4):392–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41(2):276–81.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Elluru SR, Kaveri SV, Bayry J. The protective role of immunoglobulins in fungal infections and inflammation. Semin Immunopathol. 2014;37(2):187–97.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Welle RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Farley PC, Sullivan PA. The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiology. 1998;144:2355–66.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006;e129:2.Google Scholar
  21. Flaherman VJ, Hector R, Rutherford GW. Estimating severe coccidioidomycosis in California. Emerg Infect Dis. 2007;13(7):1087–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Friedman JA, Wijdicks EF, Fulgham JR, Wright AJ. Meningoencephalitis due to Blastomyces dermatitidis: case report and literature review. Mayo Clin Proc. 2000;75:403–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. MBio. 2010;1(1):e00061–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Garcia-Vidal C, Viasus D, Carratala J. Pathogenesis of invasive fungal infections. Curr Opin Infect Dis. 2013;26:270–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hamilton AJ, Holdon MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol. 1999;37:375–89.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Han X, Yu R, Zhen D, Tao S, Schmidt M, Han L. β-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS One. 2011;6:e21468.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hardison SE, Brown GD. C type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13(9):817–22.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.PubMedPubMedCentralGoogle Scholar
  30. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun. 2002;70:5246–55.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hilty J, George Smulian A, Newman SL. Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages. Med Mycol. 2011;49:633–42.PubMedPubMedCentralGoogle Scholar
  32. Hole CR, Wormley FL Jr. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol. 2012;3:291.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hwang LH, Mayfield JA, Rine J, Sil A. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog. 2008;4:e1000044.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012;54:S16–22.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jantunen E, Volin L, Salonen O, Piilonen A, Parkkali T, Anttila VJ, et al. Central nervous system aspergillosis in allogenic stem cell transplant recipients. Bone Marrow Transplant. 2003;31:191–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence. 2017;8:186–97.PubMedCrossRefGoogle Scholar
  37. Kamai Y, Lossinsky AS, Liu H, Sheppard DC, Filler SG. Polarized response of endothelial cells to invasion by Aspergillus fumigatus. Cell Microbiol. 2009;11:170–82.PubMedCrossRefGoogle Scholar
  38. Kauffman CA. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev. 2007;20(1):115–32.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Khan AAH, Karuppayil SM. Fungal pollution of indoor environments and its management. Saudi J Biol Sci. 2012;19:405–26.CrossRefGoogle Scholar
  40. Khan MS, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. In: Ahmad I, Owais M, Shahid M, Aqil F, editors. Combating fungal infections: problems and remedy. Berlin, Heidelberg, Germany: Springer-Verlag; 2010. p. 21–45.CrossRefGoogle Scholar
  41. Khuu D, Shafir S, Bristow B, Sorvillo F. Blastomycosis mortality rates, United States, 1990–2010. Emerg Infect Dis. 2014;20(11):1789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kobayashi GS. Chapter 74: Disease mechanisms of fungi. In: Baron S, editor. Medical microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996.Google Scholar
  43. Kohler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014;5:a019273.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004;17:255–67.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kunadharaju R, Choe U, Harris JR, Lockhart SR, Greene JN. Cryptococcus gattii, Florida, USA, 2011 [Letter]. Emerg Infect Dis. 2013;19(3):519–21.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Leach MD, Cowen LE. Surviving the heat of the moment: a fungal pathogens perspective. PLoS Pathog. 2013;9:e1003163.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lee PPW, Chan K-W, Lee T-L, Ho MH-K, Chen X-Y, Li C-H, et al. Penicilliosis in children without HIV infection—are they immunodeficient? Clin Infect Dis. 2012;54(2):e8–e19.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res. 2015;136:116–30.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lin H, Rathmell JC, Gray GS, Thompson CB, Leiden JM, Alegre ML. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J Exp Med. 1998;188:199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lin XR, Alspaugh JA, Liu HP, Harris S. Fungal morphogenesis. Cold Spring Harb Perspect Med. 2015;5:a019679.PubMedCentralCrossRefGoogle Scholar
  51. Long KH, Gomez FJ, Morris RE, Newman SL. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol. 2003;170:487–94.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Loza L, Fu Y, Ibrahim AS, Sheppard DC, Filler SG, Edwards JE Jr. Functional analysis of the Candida albicans ALS1 gene product. Yeast. 2004;21:473–82.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lupi O, Tyring SK, McGinnis MR. Tropical dermatology: fungal tropical diseases. J Am Acad Dermatol. 2005;53:931–51.PubMedCrossRefPubMedCentralGoogle Scholar
  54. McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 2008;4:e1000154.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC. Human fungal pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med. 2015;5:1–33.CrossRefGoogle Scholar
  56. Mohan S, Jain KK, Arabi M, Shah GV. Imaging of meningitis and ventriculitis. Neuroimaging Clin N Am. 2012;22:557–83.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Moran GP, Coleman DC, Sullivan DJ. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell. 2011;10(1):34–42.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, et al. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. J Immunol. 2014;193:4107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Newman SL, Chaturvedi S, Klein BS. The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. J Immunol. 1995;154:753–61.PubMedPubMedCentralGoogle Scholar
  60. Nosanchuk JD, Valadon P, Feldmesser M, Casadevall A. Melanization of Cryptococcus neoformans in murine infection. Mol Cell Biol. 1999;19:745–50.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM, Perfect JR, et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol. 2004;164:1761–71.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, et al. CD4+CD25+Foxp3+ regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity. 2011;34:422–34.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, et al. Infectious Diseases Society of a clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.PubMedCrossRefPubMedCentralGoogle Scholar
  64. de Pauw BE. What are fungal infections? Mediterr J Hematol Infect Dis. 2011;3(1):e2011001.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pendelbury WW, Perl DP, Munoz DG. Multiple microabscesses in the central nervous system: a clinicopathologic study. J Neuropathol Exp Neurol. 1989;48:290–300.CrossRefGoogle Scholar
  66. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1–53.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci. 2015;72:2261–87.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15:300–12.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Rangel-Guerra RA, Martinezz HR, Saenz C, Bosques-Padilla F, Estrada-Bellmann I. Rhinocerebral and systemic mucormycosis. Clinical experience with 36 cases. J Neurol Surg. 1996;143:19–30.Google Scholar
  70. Rappleye CA, Goldman WE. Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol. 2006;60:281–303.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum a-(1,3)-glucan blocks innate immune recognition by the b-glucan receptor. Proc Natl Acad Sci U S A. 2007;104:1366–70.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ries LNA, Beattie S, Cramer RA, Goldman GH. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol. 2018;107:277–97.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2004;4:1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Romani L, Puccetti P. Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol. 2006;14:183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in fungal diseases. Microorganisms. 2016;4:47.PubMedCentralCrossRefGoogle Scholar
  76. Roy M, Benedict K, Deak E, Kirby MA, McNiel JT, Sickler CJ, et al. A large community outbreak of blastomycosis in Wisconsin with geographic and ethnic clustering. Clin Infect Dis. 2013;57(5):655–62.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rutz S, Ouyang W. Regulation of interleukin-10 expression. Adv Exp Med Biol. 2016;941:89–116.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Santelli AC, Blair JE, Roust LR. Coccidioidomycosis in patients with diabetes mellitus. Am J Med. 2006;119(11):964–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sharma RR. Fungal infections of the nervous system: current perspective and controversies in management. Int J Surg. 2010;8:591–601.CrossRefGoogle Scholar
  80. Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:1722–31.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shelburne SA 3rd, Hamill RJ, Rodriguez-Barradas MC, Greenberg SB, Atmar RL, Musher DW, et al. Immune reconstitution inflammatory syndrome: emergence of a unique syndrome during highly active antiretroviral therapy. Medicine. 2002;81:213–27.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sheppard DC, Filler SG. Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med. 2015;5:a019687.PubMedCentralCrossRefGoogle Scholar
  83. Shih RY, Koeller KK. Bacterial, fungal, and parasitic infections of the central nervous system: radiologic-pathologic correlation and historical perspectives. Radiographics. 2015;35:1141–69.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Simoes SA, Leite DP Jr, Hahn RC. Fungal microbiota in air-conditioning installed in both adult and neonatal intensive treatment units and their impact in two university hospitals of the central western region, Mato Grosso, Brazil. Mycopathologia. 2011;172:109–16.CrossRefGoogle Scholar
  85. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996;271:1552–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sundaram C, Shankar SK, Thong WK, Pardo-Villamizar CA. Pathology and diagnosis of central nervous system infections. Pathol Res Int. 2011;2011:878263.Google Scholar
  87. Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology. 2007;153:29–41.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:983–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol. 2008;46:749–72.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD. The evolution of combinatorial gene regulation in fungi. PLoS Biol. 2008;6:e38.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Verma A, Wuthrich M, Deepe G, Klein B. Adaptive immunity to fungi. Cold Spring Harb Perspect Med. 2015;5:a019612.PubMedCentralCrossRefGoogle Scholar
  92. Wheat LJ, Batteiger BE, Sathapatayavongs B. Histoplasma capsulatum infections of the central nervous system. Medicine. 1990;69:244–60.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Whibley N, Maccallum DM, Vickers MA, Zafreen S, Waldmann H, Hori S, et al. Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol. 2014;44:1069–83.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol. 2013;16:409–13.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog. 2010;6:e1000945.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chandrasekhar Srinivasamurthy Banushree
    • 1
  • Neriyana Sannappa Madhusudhan
    • 2
  1. 1.Department of PathologyIndira Gandhi Medical college and Research InstitutePuducherryIndia
  2. 2.Department of MicrobiologyIndira Gandhi Medical College and Research InstitutePuducherryIndia

Personalised recommendations