• Anita Mahadevan
  • Shankar Krishna Susarla


Human fungal diseases now constitute a significant global health problem particularly in resource-poor countries with the emergence of human immunodeficiency virus ( HIV)/acquired immunodeficiency syndrome (AIDS), rapid increase in successful solid organ transplantations, and the expanding armamentarium of immunosuppressive drugs for treatment of cancers and autoimmune and rheumatological diseases. There is an urgent need for better diagnostic tools and a wider array of therapies to treat these lethal infections. Cryptococcal infection is one of the most common opportunistic infections. This “sugar-coated” yeast is a unique model of eukaryotic virulence. The pathology and immunopathogenic mechanism of Cryptococcus species are the most studied, and have helped in enhancing our understanding of fungal pathogenesis in general, developing robust diagnostic tests, as well as standardizing treatment modalities. However, there remain several unanswered questions as to how these pathogens cause disease within the central nervous system. Unravelling answers to these questions will provide new insights into organ-specific fungal pathogenesis and will help develop effective treatment reducing morbidity and mortality.


Cryptococcus Meningitis Capsular polysaccharide Virulence factors Neuropathology Pathogenesis 



Acquired immunodeficiency syndrome


Antiretroviral therapy


Blood-brain barrier


Cryptococcal meningitis


Central nervous system


Cerebrospinal fluid


Dendritic cell


Early fungicidal activity


Highly active antiretroviral therapy






Human immunodeficiency virus




Inducible nitric oxide synthase


Immune restoration disease


Immune reconstitution inflammatory syndrome




Magnetic resonance imaging


Tumor necrosis factor


  1. Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16:2161–5.PubMedCrossRefGoogle Scholar
  2. Alvarez M, Casadevall A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 2007;8:16.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Banerjee U, Dutta K, Diwedi MSS. Cryptococcosis due to C. neoformans var. gattii: a short review and Indian clinical scenario. Nat J Infect Dis. 2001;2:32–6.Google Scholar
  4. Banerjee U, Datta K, Casadevall A. Serotype distribution of Cryptococcus neoformans in patients in a tertiary care center in India. Med Mycol. 2004;42:181–6.PubMedCrossRefGoogle Scholar
  5. Beardsley J, Wolbers M, Kibengo FM, Ggayi A-BM, Kamali A, Cuc NTK, et al. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N Engl J Med. 2016;374:542–54.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, et al. Highly recombinant VGII Cryptococcus gattii population develops clonal outbreak clusters through both sexual macroevolution and asexual microevolution. MBio. 2014;5:e01494–14.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boulware DR, Bonham SC, Meya DB, Wiesner DL, Park GS, Kambugu A, et al. Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. J Infect Dis. 2010;202:962–70.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buchanan KL, Murphy JW. What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis. 1998;4:71–83.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Byrnes EJ, et al. First reported case of Cryptococcus gattii in the Southeastern USA: implications for travel-associated acquisition of an emerging pathogen. PLoS One. 2009;4(6):e5851.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–13.PubMedPubMedCentralGoogle Scholar
  11. Chakrabarti A, Jatana M, Kumar P, Chatha L, Kaushal A, Padhye AA. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India. J Clin Microbiol. 1997;35:3340–2.PubMedPubMedCentralGoogle Scholar
  12. Chang YC, Kwon-Chung KJ. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994;14:4912–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun. 2004;72:4985–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Charlier C, Chretien F, Baudrimont M, Mordelet E, Lortholary O, Dromer F. Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol. 2005;166:421–32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77:120–7.PubMedCrossRefGoogle Scholar
  16. Chen SC, Wright LC, Santangelo RT, Muller M, Moran VR, Kuchel PW, et al. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect Immun. 1997;65:405–11.PubMedPubMedCentralGoogle Scholar
  17. Chen LC, Goldman DL, Doering TL, Pirofski LA, Casadevall A. Antibody response to Cryptococcus neoformans proteins in rodents and humans. Infect Immun. 1999;67:2218–24.PubMedPubMedCentralGoogle Scholar
  18. Cherniak R, Reiss E, Slodki ME, Plattner RD, Blumer SO. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol Immunol. 1980;17:1025–32.PubMedCrossRefGoogle Scholar
  19. Cherniak R, Reiss E, Turner SH. A galactoxylomannan antigen of Cryptococcus neoformans serotype A. Carbohydr Res. 1982;103:239–50. Available from: CrossRefGoogle Scholar
  20. Chretien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis. 2002;186:522–30.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog. 2011;7:e1002047.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. Annu Rev Pathol. 2014;9:219–38.PubMedCrossRefGoogle Scholar
  23. Collins HL, Bancroft GJ. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect Immun. 1991;59:3883–8.PubMedPubMedCentralGoogle Scholar
  24. Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol. 2001;39:166–75.PubMedCrossRefGoogle Scholar
  25. Day JN, Chau TTH, Wolbers M, Mai PP, Dung NT, Mai NH, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368:1291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Jesus M, Nicola AM, Chow S-K, Lee IR, Nong S, Specht CA, et al. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence. 2010;1:500–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Delfino D, Cianci L, Migliardo M, Mancuso G, Cusumano V, Corradini C, et al. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components. Infect Immun. 1996;64:5199–204.PubMedPubMedCentralGoogle Scholar
  28. Delfino D, Cianci L, Lupis E, Celeste A, Petrelli ML, Curro F, et al. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infect Immun. 1997;65:2454–6.PubMedPubMedCentralGoogle Scholar
  29. Denning DW, Armstrong RW, Lewis BH, Stevens DA. Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med. 1991;91:267–72.PubMedCrossRefGoogle Scholar
  30. Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80:176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dong ZM, Murphy JW. Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect Immun. 1995;63:770–8.PubMedPubMedCentralGoogle Scholar
  32. Dong ZM, Murphy JW. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest. 1996;97:689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dromer F, Mathoulin-Pelissier S, Launay O, Lortholary O. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med. 2007;4:e21.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Drummond RA. Neuro-immune mechanisms of anti-cryptococcal protection. J Fungi (Basel). 2017;4:4.CrossRefGoogle Scholar
  35. Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 2007;7:499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Eisenman HC, Casadevall A, McClelland EE. New insights on the pathogenesis of invasive Cryptococcus neoformans infection. Curr Infect Dis Rep. 2007;9:457–64.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ellerbroek PM, Hoepelman AIM, Wolbers F, Zwaginga JJ, Coenjaerts FEJ. Cryptococcal glucuronoxylomannan inhibits adhesion of neutrophils to stimulated endothelium in vitro by affecting both neutrophils and endothelial cells. Infect Immun. 2002;70:4762–71.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000;68:4225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Feldmesser M, Kress Y, Casadevall A. Intracellular crystal formation as a mechanism of cytotoxicity in murine pulmonary Cryptococcus neoformans infection. Infect Immun. 2001;69:2723–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.PubMedCrossRefPubMedCentralGoogle Scholar
  41. French MA. HIV/AIDS: immune reconstitution inflammatory syndrome: a reappraisal. Clin Infect Dis. 2009;48:101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Garcia-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol. 2012;64:147–61.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gazzoni AF, Oliveira F d M, Salles EF, Mayayo E, Guarro J, Capilla J, et al. Unusual morphologies of Cryptococcus spp. in tissue specimens: report of 10 cases. Rev Inst Med Trop Sao Paulo. 2010;52:145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gerik KJ, Donlin MJ, Soto CE, Banks AM, Banks IR, Maligie MA, et al. Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans. Mol Microbiol. 2005;58:393–408.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, et al. Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Sci Adv. 2017;3:e1700898.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Granger DL, Perfect JR, Durack DT. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest. 1985;76:508–16.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Griffin FMJ. Roles of macrophage Fc and C3b receptors in phagocytosis of immunologically coated Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1981;78:3853–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guerrero A, Fries BC. Phenotypic switching in Cryptococcus neoformans contributes to virulence by changing the immunological host response. Infect Immun. 2008;76:4322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20:52–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Healy ME, Dillavou CL, Taylor GE. Diagnostic medium containing inositol, urea, and caffeic acid for selective growth of Cryptococcus neoformans. J Clin Microbiol. 1977;6:387–91.PubMedPubMedCentralGoogle Scholar
  51. Hole C, Wormley FLJ. Innate host defenses against Cryptococcus neoformans. J Microbiol. 2016;54:202–11.PubMedCrossRefGoogle Scholar
  52. Hosseini-Moghaddam SM, Husain S. Fungi and molds following lung transplantation. Semin Respir Crit Care Med. 2010;31:222–33.PubMedCrossRefGoogle Scholar
  53. Huang S-H, Long M, Wu C-H, Kwon-Chung KJ, Chang YC, Chi F, et al. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem. 2011;286:34761–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huffnagle GB, Lipscomb MF. Cells and cytokines in pulmonary cryptococcosis. Res Immunol. 1998;149:387–96. Available from: PubMedCrossRefGoogle Scholar
  55. Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strieter RM, Toews GB. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol. 1995;155:3507–16.PubMedGoogle Scholar
  56. Jacobson ES, Emery HS. Temperature regulation of the cryptococcal phenoloxidase. J Med Vet Mycol. 1991;29:121–4.PubMedCrossRefGoogle Scholar
  57. Jacobson ES, Jenkins ND, Todd JM. Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect Immun. 1994;62:4085–6.PubMedPubMedCentralGoogle Scholar
  58. Jain N, Guerrero A, Fries BC. Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res. 2006;6:480–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin Infect Dis. 2014;58:736–45.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jarvis JN, Meintjes G, Bicanic T, Buffa V, Hogan L, Mo S, et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis. PLoS Pathog. 2015;11:e1004754.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Johnston SA, May RC. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog. 2010;6:e1001041.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jong A, Wu C-H, Shackleford GM, Kwon-Chung KJ, Chang YC, Chen H-M, et al. Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol. 2008;10:1313–26.PubMedCrossRefGoogle Scholar
  63. Jong A, Wu C-H, Gonzales-Gomez I, Kwon-Chung KJ, Chang YC, Tseng H-K, et al. Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection. J Biol Chem. 2012;287:15298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 2006;4:e410.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Khanna N, Chandramuki A, Desai A, Ravi V. Cryptococcal infections of the central nervous system: an analysis of predisposing factors, laboratory findings and outcome in patients from South India with special reference to HIV infection. J Med Microbiol. 1996;45:376–9.PubMedCrossRefGoogle Scholar
  66. Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A. 2004;101:17258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982;129:1675–80.PubMedGoogle Scholar
  68. Kozel TR, Mastroianni RP. Inhibition of phagocytosis by cryptococcal polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. Infect Immun. 1976;14:62–7.PubMedPubMedCentralGoogle Scholar
  69. Kozel TR, Pfrommer GS. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun. 1986;52:1–5.PubMedPubMedCentralGoogle Scholar
  70. Kozel TR, Highison B, Stratton CJ. Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun. 1984;43:574–9.PubMedPubMedCentralGoogle Scholar
  71. Kozel TR, Pfrommer GS, Guerlain AS, Highison BA, Highison GJ. Role of the capsule in phagocytosis of Cryptococcus neoformans. Rev Infect Dis. 1988;10(Suppl 2):S436–9.PubMedCrossRefGoogle Scholar
  72. Kozubowski L, Heitman J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol Rev. 2012;36:78–94.PubMedCrossRefGoogle Scholar
  73. Kraus PR, Nichols CB, Heitman J. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell. 2005;4:1079–87.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol. 1984;120:123–30.PubMedCrossRefGoogle Scholar
  75. Kwon-Chung KJ, Hill WB, Bennett JE. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981;13:383–7.PubMedPubMedCentralGoogle Scholar
  76. Lee SC, Dickson DW, Casadevall A. Pathology of cryptococcal meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum Pathol. 1996a;27:839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lee SC, Casadevall A, Dickson DW. Immunohistochemical localization of capsular polysaccharide antigen in the central nervous system cells in cryptococcal meningoencephalitis. Am J Pathol. 1996b;148:1267–74.PubMedPubMedCentralGoogle Scholar
  78. Leite AGB, Vidal JE, Bonasser Filho F, Nogueira RS, de Oliveira ACP. Cerebral infarction related to cryptococcal meningitis in an HIV-infected patient: case report and literature review. Braz J Infect Dis. 2004;8:175–9.PubMedCrossRefGoogle Scholar
  79. Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 2006;6:513–24.PubMedCrossRefGoogle Scholar
  80. Lipovsky MM, Tsenova L, Coenjaerts FE, Kaplan G, Cherniak R, Hoepelman AI. Cryptococcal glucuronoxylomannan delays translocation of leukocytes across the blood-brain barrier in an animal model of acute bacterial meningitis. J Neuroimmunol. 2000;111:10–4.PubMedCrossRefGoogle Scholar
  81. Litvintseva AP, Xu J, Mitchell TG. Population structure and ecology of Cryptococcus neoformans and Cryptococcus gattii. In: Cryptococcus. Washington, DC: American Society of Microbiology; 2011. p. 97–111. Scholar
  82. Liu T-B, Perlin DS, Xue C. Molecular mechanisms of cryptococcal meningitis. Virulence. 2012;3:173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Long M, Huang S-H, Wu C-H, Shackleford GM, Jong A. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells. J Biomed Sci. 2012;19:19.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Luberto C, Toffaletti DL, Wills EA, Tucker SC, Casadevall A, Perfect JR, et al. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 2001;15:201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast by macrophages. Curr Biol. 2006;16:2156–60.PubMedCrossRefGoogle Scholar
  86. Markaryan A, Morozova I, Yu H, Kolattukudy PE. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun. 1994;62:2149–57.PubMedPubMedCentralGoogle Scholar
  87. Maruvada R, Zhu L, Pearce D, Zheng Y, Perfect J, Kwon-Chung KJ, et al. Cryptococcus neoformans phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cell Microbiol. 2012;14:1544–53.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Monari C, Bistoni F, Vecchiarelli A. Glucuronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res. 2006;6:537–42.PubMedCrossRefGoogle Scholar
  89. Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, et al. CD4(+) T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis. MBio. 2017;8
  90. Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell. 2007;6:949–59.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nosanchuk JD, Casadevall A. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect Immun. 1997;65:1836–41.PubMedPubMedCentralGoogle Scholar
  92. Olszewski MA, Noverr MC, Chen G-H, Toews GB, Cox GM, Perfect JR, et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol. 2004;164:1761–71.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–30.PubMedCrossRefGoogle Scholar
  94. Perfect JR, Casadevall A. Cryptococcosis. Infect Dis Clin N Am. 2002;16:837–74. v–viCrossRefGoogle Scholar
  95. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50:291–322.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pirofski LA, Casadevall A. Immune-mediated damage completes the parabola: Cryptococcus neoformans pathogenesis can reflect the outcome of a weak or strong immune response. MBio. 2017;8:6–10.CrossRefGoogle Scholar
  97. Polacheck I, Platt Y, Aronovitch J. Catecholamines and virulence of Cryptococcus neoformans. Infect Immun. 1990;58:2919–22.PubMedPubMedCentralGoogle Scholar
  98. Powderly WG. Cryptococcal meningitis in HIV-infected patients. Curr Infect Dis Rep. 2000;2:352–7.PubMedCrossRefGoogle Scholar
  99. Pyrgos V, Seitz AE, Steiner CA, Prevots DR, Williamson PR. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One. 2013;8:e56269.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ, et al. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS One. 2012;7:e47853.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Radhakrishnan VV, Mathai A, Shanmugham J, Mathews GJ. The role of hyaluronidase in experimental cryptococcal infections. Surg Neurol. 1982;17:239–44.PubMedCrossRefGoogle Scholar
  102. Retini C, Vecchiarelli A, Monari C, Bistoni F, Kozel TR. Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect Immun. 1998;66:664–9.PubMedPubMedCentralGoogle Scholar
  103. Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis. 2000;30:710–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Sabiiti W, May RC. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells. PLoS One. 2012;7:e35455.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sanfelice F. Contributo alla morfologia e biologia dei blastomiceti che si sviluppano nei succhi di alcuni frutti. Ann Ig. 1894;4:463–95.Google Scholar
  106. Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, et al. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun. 2004;72:2229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Satishchandra P, Nalini A, Gourie-Devi M, Khanna N, Santosh V, Ravi V, et al. Profile of neurologic disorders associated with HIV/AIDS from Bangalore, south India (1989–96). Indian J Med Res. 2000;111:14–23.PubMedGoogle Scholar
  108. Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, et al. The CSF immune response in HIV-1-associated cryptococcal meningitis: macrophage activation, correlates of disease severity, and effect of antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;75:299–307.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shankar SK, Mahadevan A, Satishchandra P, Kumar RU, Yasha TC, Santosh V, et al. Neuropathology of HIV/AIDS with an overview of the Indian scene. Indian J Med Res. 2005;121:468–88.PubMedGoogle Scholar
  110. Shankar SK, Mahadevan A, Sundaram C, Sarkar C, Chacko G, Lanjewar DN, et al. Pathobiology of fungal infections of the central nervous system with special reference to the Indian scenario. Neurol India. 2007;55:198–215.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shaw CE, Kapica L. Production of diagnostic pigment by phenoloxidase activity of Cryptococcus neoformans. Appl Microbiol. 1972;24:824–30.PubMedPubMedCentralGoogle Scholar
  112. Shea JM, Kechichian TB, Luberto C, Del Poeta M. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun. 2006;74:5977–88.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest. 2010;120:1683–93.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Siddiqui AA, Brouwer AE, Wuthiekanun V, Jaffar S, Shattock R, Irving D, et al. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J Immunol. 2005;174:1746–50.PubMedCrossRefGoogle Scholar
  115. Singh N, Forrest G. Cryptococcosis in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S192–8.PubMedCrossRefGoogle Scholar
  116. Singh N, Alexander BD, Lortholary O, Dromer F, Gupta KL, John GT, et al. Cryptococcus neoformans in organ transplant recipients: impact of calcineurin-inhibitor agents on mortality. J Infect Dis. 2007;195:756–64.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiol. 2015;17:702–13.PubMedCrossRefGoogle Scholar
  118. Staib F. Cryptococcus neoformans and Guizotia abyssinica (syn. G. oleifera D.C.). (Colour reaction for Cr. neoformans.). Zeitschrift Hyg Infekt. 1962;148:466–75.CrossRefGoogle Scholar
  119. Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJM, Perfect JR, et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell. 2003;2:1336–49.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tjia TL, Yeow YK, Tan CB. Cryptococcal meningitis. J Neurol Neurosurg Psychiatry. 1985;48:853–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tripathi S, Patro I, Mahadevan A, Patro N, Phillip M, Shankar SK. Glial alterations in tuberculous and cryptococcal meningitis and their relation to HIV co-infection—a study on human brains. J Infect Dev Ctries. 2014;8:1421–43.PubMedCrossRefGoogle Scholar
  122. Vecchiarelli A, Pietrella D, Dottorini M, Monari C, Retini C, Todisco T, et al. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin Exp Immunol. 1994a;98:217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Vecchiarelli A, Dottorini M, Pietrella D, Monari C, Retini C, Todisco T, et al. Role of human alveolar macrophages as antigen-presenting cells in Cryptococcus neoformans infection. Am J Respir Cell Mol Biol. 1994b;11:130–7.PubMedCrossRefGoogle Scholar
  124. Velagapudi R, Hsueh Y-P, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 2009;77:4345–55.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Vu K, Tham R, Uhrig JP, Thompson GR 3rd, Na Pombejra S, Jamklang M, et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio. 2014;5:e01101–14.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wadia RS, Pujari SN, Kothari S, Udhar M, Kulkarni S, Bhagat S, et al. Neurological manifestations of HIV disease. J Assoc Physicians India. 2001;49:343–8.PubMedGoogle Scholar
  127. Wang Y, Casadevall A. Growth of Cryptococcus neoformans in presence of L-dopa decreases its susceptibility to amphotericin B. Antimicrob Agents Chemother. 1994;38:2648–50.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wong B, Perfect JR, Beggs S, Wright KA. Production of the hexitol D-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun. 1990;58:1664–70.PubMedPubMedCentralGoogle Scholar
  129. Xu C-Y, Zhu H-M, Wu J-H, Wen H, Liu C-J. Increased permeability of blood-brain barrier is mediated by serine protease during Cryptococcus meningitis. J Int Med Res. 2014;42:85–92.PubMedCrossRefGoogle Scholar
  130. Xue C, Tada Y, Dong X, Heitman J. The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe. 2007;1:263–73.PubMedCrossRefGoogle Scholar
  131. Xue C, Liu T, Chen L, Li W, Liu I, Kronstad JW, et al. Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. MBio. 2010;1:e00084–10.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zaragoza O. Multiple disguises for the same party: the concepts of morphogenesis and phenotypic variations in Cryptococcus neoformans. Front Microbiol. 2011;2:181.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela JL, et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol. 2008;10:2043–57.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol. 2009;68:133–216.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 2004;5:1–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anita Mahadevan
    • 1
  • Shankar Krishna Susarla
    • 1
  1. 1.Department of NeuropathologyNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia

Personalised recommendations