Use of Ion-Exchange Resins in Alkylation Reactions

  • Elizabeth Roditi LachterEmail author
  • Jorge Almeida Rodrigues
  • Viviane Gomes Teixeira
  • Roberta Helena Mendonça
  • Paula Salino Ribeiro
  • Santiago Villabona-Estupiñan


Important organic reactions require the use of catalysts in order to be industrially or academically applicable. Heterogeneous catalysts, in this context, show significant advantages over conventional homogeneous catalysts, especially with regard to separation of products from the reaction medium, recycling, and reuse. Ion-exchange resins are solid acid heterogeneous catalysts that play a key role in many useful reactions such as alkylation, esterification, etherification of olefins with alcohols, dehydration of alcohols to olefins or ethers, olefin hydration, and ester hydrolysis. Alkylation is the transfer of an alkyl group from one molecule to another, and is one of the most important catalytic processes of the chemical industries since it is widely applied in different areas such as fuels, cleaning products, and pharmacological products. This chapter presents a review of the use of ion-exchange resins in alkylation reactions on different substrates, highlighting the particularities of each case. First, definitions and classical industrial processes are discussed followed by an illustration of alkylation reactions in terms of mechanism, activity, and selectivity. Finally, the use of biomass derivatives in catalyzed alkylation reactions with ion-exchange resins is presented.


Alkylation Ion-exchange resins Catalysis Branched alkanes Aromatic compounds Biomass derivatives 


  1. 1.
    Olah GA (1963) Friedel-Crafts and related reactions. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Tanabe K, Holderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A 181:399–434CrossRefGoogle Scholar
  3. 3.
    Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22CrossRefGoogle Scholar
  4. 4.
    Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107:5366–5410PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wang H, Meng X, Zhao G, Zhang S (2017) Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chem 19:1462–1489CrossRefGoogle Scholar
  6. 6.
    Wang JJ, Chuang YY, Hsu HY, Tsai TC (2017) Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: a mini review. Catal Today 298:109–116CrossRefGoogle Scholar
  7. 7.
    Singhal S, Agarwal S, Arora S, Singhal N, Kumar A (2017) Solid acids: potential catalysts for alkene-isoalkane alkylation. Catal Sci Technol 7:5810–5819CrossRefGoogle Scholar
  8. 8.
    Dolganova I, Ivanchina E, Ivashkina E (2018) Alkylaromatics in detergents manufacture: modeling and optimizing linear alkylbenzene sulfonation. Surfct Deterg 21:175–184CrossRefGoogle Scholar
  9. 9.
    Weissemel K, Arpe HJ (1997) Industrial organic chemistry, 3rd edn. VCH, Weinheim, p 358CrossRefGoogle Scholar
  10. 10.
    Pal R, Sarkar T, Khasnobis S (2012) Amberlyst-15 in organic synthesis. Arkivoc 1:570–609Google Scholar
  11. 11.
    Dasgupta S, Török B (2008) Environmentally benign contemporary Friedel-Crafts chemistry by solid acids. Curr Org Synth 5:21–342CrossRefGoogle Scholar
  12. 12.
    Zhang X, Zhao Y, Xu S, Yang Y, Liu J, Wei Y, Yang Q (2014) Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nat Commun 5:3170PubMedCrossRefGoogle Scholar
  13. 13.
    Li H, Riisager A, Sravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187CrossRefGoogle Scholar
  14. 14.
    Alfs H, Steiner H, Grunheit KH (1979) Bohm, G. Process for continuous alkylation of phenol using ion exchange resins. USA 4,168,390Google Scholar
  15. 15.
    Li L, Zhang J, Du C, Luo G (2018) Process intensification of sulfuric acid alkylation using a microstructured chemical system. Ind Eng Chem Res 57:3523–3529CrossRefGoogle Scholar
  16. 16.
    Li Y, Liu R, Zhao G, Zhou Z, Zhang J, Shi C, Liu X, Zhang X, Zhang S (2018) Simulation and optimization of fixed bed solid acid catalyzed isobutane/2-butene alkylation process. Fuel 216:686–696CrossRefGoogle Scholar
  17. 17.
    Sharma MM (1995) Some novel aspects of cationic ion-exchange resins as catalysts. React Funct Polym 26:3–23CrossRefGoogle Scholar
  18. 18.
    Harmer MA, Sun Q (2001) Solid acids catalysis using ion exchange resins. Appl Catal A Gen 221:45–62CrossRefGoogle Scholar
  19. 19.
    Zhang X, Deng Q, Han P, Xu J, Pan L, Wang L, Zou JJ (2017) Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2-methylfuran and ketone to high-density biofuel. AIChE J 63:680–688CrossRefGoogle Scholar
  20. 20.
    Gelbard G (2005) Organic synthesis by catalysis with ion-exchange resins. Ind Eng Chem Res 44:8468–8498CrossRefGoogle Scholar
  21. 21.
    Zhang X, Yaopeng ZY, Yang Q (2014) PS-SO3H@phenylenesilica with yolk–double-shell nanostructures as efficient and stable solid acid catalysts. J Catal 320:180–188CrossRefGoogle Scholar
  22. 22.
    Teixeira VT, Coutinho FMB (2010) Morphological study on the reactivity of styrene-divinylbenzene copolymers in a chloromethylation reaction. J Appl Polym Sci 118:2389–2396Google Scholar
  23. 23.
    Kunin R, Meitzner E, Bortnick N (1962) Macroreticular ion exchange resins. J Chem Soc 84:305–306CrossRefGoogle Scholar
  24. 24.
    Millar JR, Smith DG, Marr WE, Kressman TRE (1963) Solvent modified polymer networks. Part I. The preparation and characterisation of expanded-network and macroporous styrene-divinylbenzene copolymers and their sulphonates. J Chem Soc: 218–225CrossRefGoogle Scholar
  25. 25.
    Kun KA, Kunin R (1964) Pore structure of some macroreticular ion exchange resin. Polym Lett 12:587–591CrossRefGoogle Scholar
  26. 26.
    Sederel WL, de Jong GJ (1973) Styrene-divinylbenzene copolymers. Construction of porosity in styrene divinylbenzene matrices. J Appl Polym Sci 17:2835–2846CrossRefGoogle Scholar
  27. 27.
    Poinescu IC, Beldie C, Vlad C (1984) Styrene divinylbenzene copolymers: influence of the diluent on network porosity. J Appl Polym Sci 29:23–34CrossRefGoogle Scholar
  28. 28.
    Okay O, Balkas TI (1986) Heterogeneous styrene-divinylbenzene copolymers in collapsed and reexpanded states. J Appl Polym Sci 31:1785–1795CrossRefGoogle Scholar
  29. 29.
    Rabelo D, Coutinho FMB (1994) Structure and properties of styrene-divinylbenzene copolymers I. Pure solvents as pore forming agents. Polym Bull 33:479–486CrossRefGoogle Scholar
  30. 30.
    Okay O (1999) Phase separation in free-radical crosslinking copolymerization: formation of heterogeneous polymer networks. Polymer 40:4117–4129CrossRefGoogle Scholar
  31. 31.
    Barton AF (1991) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca RatonCrossRefGoogle Scholar
  33. 33.
    Millar JR, Smith DG, Kressman TRE (1965) Solvent modified polymer networks. Part IV. Styrene-divinylbenzene copolymers made in the presence of non-sovating diluents. J Chem Soc: 304–310Google Scholar
  34. 34.
    Howard GJ, Midgley CA (1981) The formation and structure of suspension polymerized styrene-divinylbenzene copolymers. J Appl Polym Sci 26:3845–3870CrossRefGoogle Scholar
  35. 35.
    Wieczorek PP, Kolarz BN, Galena H (1984) Porous structure of highly crosslinked styrene-divinylbenzene copolymers. Angew Makromol Chem 126:39–50CrossRefGoogle Scholar
  36. 36.
    Costa LC, Gomes AS, Coutinho FMB, Teixeira VG (2010) Chelating resins for mercury extraction based on grafting of polyacrylamide chains onto styrene-divinylbenzene copolymers by gamma irradiation. React Funct Polym 70:738–746CrossRefGoogle Scholar
  37. 37.
    Aguiar LG, Moura JOV, Neto TGS, Lopes VMP, Dias JR (2017) Prediction of resin textural properties by vinyl/divinyl copolymerization modeling. Polymer 129:21–31CrossRefGoogle Scholar
  38. 38.
    Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, Shiekh RA (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123CrossRefGoogle Scholar
  39. 39.
    Antunes BM, Rodrigues AE, Lin Z, Portugal I, Silva CM (2015) Alkenes oligomerization with resin catalysts. Fuel Process Technol 138:86–99CrossRefGoogle Scholar
  40. 40.
    Chakrabarti A, Sharma MM (1993) Cationic ion exchange resins as catalyst. Reac Polym 20:1–45CrossRefGoogle Scholar
  41. 41.
    Jerabek K, Hanková L, Holub L (2010) Working-state morphologies of ion exchange catalysts and their influence on reaction kinetics. J Mol Catal A Chem 333:109–113CrossRefGoogle Scholar
  42. 42.
    Buttersack C, Widdecke H, Klein J (1986) The concept of variable active centers in acid catalysis. PART I alkylation of benzene with olefins catalyzed by ion exchange resins. J Mol Catal 38:365–381CrossRefGoogle Scholar
  43. 43.
    Molnár A (2011) Nafion-silica nanocomposites: a new generation of water-tolerant solid acids of high efficiency-an update. Curr Org Chem 15:3928–3960CrossRefGoogle Scholar
  44. 44.
    Thomas JM, Thomas WJ (2015) Principles and practice of heterogeneous catalysis, 2nd edn. Wiley, KGaAGoogle Scholar
  45. 45.
    Luyben WL (2007) Chemical reactor design and control. Wiley, LondonCrossRefGoogle Scholar
  46. 46.
    Unnikrishnan P, Srinivas D (2016) Heterogeneous catalysis. In: Industrial catalytic processes for fine and specialty chemicals. Elsevier, Joshi SS, Ranade VV (eds) CSIR-national chemical laboratory, Pune, IndiaGoogle Scholar
  47. 47.
    Radcliffe WH, Kiel WL, Gosling SD, Sechrist PA, Anderson P (2004) Apparatus for alkylation using solid catalyst particles in a transport reactor USA 6,814,943 B2Google Scholar
  48. 48.
    Kaufman S, Brunswick E, Nicol RE (1969) Process for continuous alkylation of aryl hydroxides using ion- exchange resins. USA 3,422,157Google Scholar
  49. 49.
    Skripek M (1966) Process for alkylating aromatic hydrocarbons using a sulfonated resin catalyst. USA 3,238,266Google Scholar
  50. 50.
    Pines H (1981) The Chemistry of catalytic hydrocarbon conversions. Academic Press, New YorkGoogle Scholar
  51. 51.
    Olah GA, Prakash GKS, Sommer J (1985) Superacids. Wiley, New YorkGoogle Scholar
  52. 52.
    Corma A, Martinez A (1993) Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: actual situation and future trends. Catal Rev-Sci Eng 35:483–570CrossRefGoogle Scholar
  53. 53.
    Olah GA, Btamack P, Deffieux D, Török B, Wang Q, Molnár A, Prakash GKS (1996) Acidity dependence of the trifluoromethanesulfonic acid catalyzed isobutane-isobutylene alkylation modified with trifluoroacetic acid or water. Appl Catal A 146:107–117CrossRefGoogle Scholar
  54. 54.
    Feller A, Zuazo I, Guzman A, Barth JO, Lercher AJ (2003) Common mechanistic aspects of liquid and solid acid catalyzed alkylation of isobutane with n-butene. J Catal 216:313–323CrossRefGoogle Scholar
  55. 55.
    Esteves PM, Araujo CL, Horta BAC, Alvarez LJ, Wilson-Zicovich CM, Solis-Ramirez A (2005) The isobutylene-isobutane alkylation process in liquid HF revisited. J Phys Chem B 109:12946–12955PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Albright LF (2009) Present and future alkylation processes in refineries. Ind Eng Chem Res 48:1409–1413CrossRefGoogle Scholar
  57. 57.
    Hidalgo JM, Zbuzek M, Cerný R, Jísa P (2014) Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality. Cent Eur J Chem 12:1–13CrossRefGoogle Scholar
  58. 58.
    Shen W, Dube D, Kaliaguine S (2008) Alkylation of isobutane/1-butene over periodic mesoporous organosilica functionalized with perfluoroalkylsulfonic acid group. Catal Commun 10:291–294CrossRefGoogle Scholar
  59. 59.
    Shen W, Gu Y, Xu H, Dubé D, Kaliaguine S (2010) Alkylation of isobutane/1-butene on methyl-modified nafion/SBA-15 materials. Appl Catal A 377:1–8CrossRefGoogle Scholar
  60. 60.
    Shen W, Gu Y, Xu H, Che R, Dubé D, Kaliaguine S (2010) Alkylation of isobutane/1-butene on methyl-modified nafion/SBA-16 materials. Ind Eng Chem Res 49:7201–7209CrossRefGoogle Scholar
  61. 61.
    Gobin OC, Huang Q, Vinh-Thang H, Kleitz F, Eic M, Kaliaguine S (2007) Mesostructured silica SBA-16 with tailored intrawall porosity part 2: diffusion. J Phys Chem C 111:3059–3065CrossRefGoogle Scholar
  62. 62.
    Botella P, Corma A, Lopez-Nieto JM (1999) The influence of textural and compositional characteristics of nafion/silica composites on isobutane/2-butene alkylation. J Catal 185:371–377CrossRefGoogle Scholar
  63. 63.
    Lyon CJ, Sarsani VSR, Subramaniam B (2004) 1-butene + isobutane reactions on solid acid catalysts in dense CO2-based reaction media: experiments and modeling. Ind Eng Chem Res 43:4809–4814CrossRefGoogle Scholar
  64. 64.
    Harmer MA, Farneth WE, Sun Q (1998) Towards the sulfuric acid of solids. Adv Mater 10:1255–1257CrossRefGoogle Scholar
  65. 65.
    Heidekum A, Harmer MA, Holderich WF (1998) Highly selective fries rearrangement over zeolites and Nafion in silica composite catalysts: a comparison. J Catal 176:260–263CrossRefGoogle Scholar
  66. 66.
    Kumar P, Vermeiren W, Dath JP, Hoelderich WF (2006) Alkylation of raffinate II and isobutane on Nafion silica nanocomposite for the production of isooctane. Energy Fuels 20:481–487CrossRefGoogle Scholar
  67. 67.
    Alvaro M, Corma A, Das D, Fornés V, Gracia H (2004) Single step, preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion. Chem Commun: 956–957Google Scholar
  68. 68.
    Macquarrie DJ, Tavener SJ Harmer MA (2005) Novel mesoporous silica-perfluorosulfonic acid hybrids as strong heterogeneous bronsted catalysts. Chem Commun: 2363–2365Google Scholar
  69. 69.
    Martinez F, Morales G, Martin A, van Grieken R (2008) Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole. Appl Catal A Gen 347:169–178CrossRefGoogle Scholar
  70. 70.
    Collins NA, Trewella JC (1997) Alkylation process for desulfurization of gasoline. US. Patent No.5, 599,441Google Scholar
  71. 71.
    Guo B, Wang R, Li Y (2010) The performance of solid phosphoric acid catalysts and macroporous sulfonic resins on gasoline alkylation desulfurization. Fuel Process Technol 91:1731–1735CrossRefGoogle Scholar
  72. 72.
    Guo B, Wang R, Li Y (2011) Gasoline alkylation desulfurization over amberlyst 35 resin: influence of methanol and apparent reaction kinetics. Fuel 90:713–718CrossRefGoogle Scholar
  73. 73.
    Wang R, Wan J, Li Y, Sun H (2014) An insight into effect of methanol on catalytic behavior of amberlyst 35 resins for alkylation desulfurization of fluid catalytic cracking gasoline. Fuel 115:609–617CrossRefGoogle Scholar
  74. 74.
    Wang R, Wan J, Li Y, Sun H (2015) A further catalysis mechanism study on amberlyst 35 resins application in alkylation desulfurization of gasoline. Chem Eng Sci 137:59–68CrossRefGoogle Scholar
  75. 75.
    Xu W, Li Y (2015) Alkylation desulfurization of the C9 fraction over amberlyst 36 resin. RSC Adv 5:2908–2913CrossRefGoogle Scholar
  76. 76.
    Olah GA (1973) Friedel-Crafts chemistry. Wiley, New YorkGoogle Scholar
  77. 77.
    Olah GA, Iyer PS, Prakash GKS (1986) Perfluorinated resin sulfonic acid (Nation–H) catalysis in synthesis. Synthesis 7:513–531CrossRefGoogle Scholar
  78. 78.
    Olah GA, Molnar A, Prakash GKS (2018) Hydrocarbon chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  79. 79.
    Roberts RM, Khalaf AA (1984) Friedel-Crafts alkylation chemistry: a century of discovery. Marcel Dekker, New YorkGoogle Scholar
  80. 80.
    Harmer MA, Sun Q, Farneth WE (1996) High surface area Nafion† Resin/Silica Nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715CrossRefGoogle Scholar
  81. 81.
    Harmer MA, Sun Q, Vega AJ, Farneth WE, Heidekum A, Hoelderich WF (2000) Nafion resin-silica nanocomposite solid acid catalysts. Microstructure—processing—property correlations. Green Chem 6:7–14CrossRefGoogle Scholar
  82. 82.
    Lachter ER, San Gil RAS, Tabak D, Costa VG, Chaves CPS, Santos JA (2000) Alkylation of toluene with aliphatic alcohols and 1-octene catalyzed by cation-exchange resins. React Funct Polym 44:1–7CrossRefGoogle Scholar
  83. 83.
    Fernandes RM, Lachter ER (2005) Evaluation of sulfonic resins for liquid phase alkylation of toluene. Catal Commun 6:550–554CrossRefGoogle Scholar
  84. 84.
    Cadenas M, Bringué R, Fité C, Iborra M, Ramírez E, Cunill F (2014) Alkylation of toluene with 1-hexene over macroreticularion-exchange resins. Appl Catal A Gen 485:143–148CrossRefGoogle Scholar
  85. 85.
    Silva MSM, Costa CL, Pinto MM, Lachter E (1995) Benzylation of benzene, toluene and anisole with benzyl alcohol catalyzed by cation-exchange resins. React Polym 25:55–61CrossRefGoogle Scholar
  86. 86.
    Coutinho FMB, Aponte ML, Barbosa CCR, Costa VG, Lachter ER, Tabak D (2003) Resinas Sulfônicas: Síntese, Caracterização e Avaliação em Reações de Alquilação. Polímeros: Ciência e Tecnologia 13: 141–146Google Scholar
  87. 87.
    Siril PF, Cross HE, Brown DR (2008) New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J Mol Catal A Chem 279:63–68CrossRefGoogle Scholar
  88. 88.
    Rosenwald RH (1978) In: Alkylphenols, M. Grayson (eds) Kirk-othmer encyclopedia of chemical technology, Wiley, New YorkGoogle Scholar
  89. 89.
    Loev B, Massengale JT (1957) Cation exchange resins as catalysts in the alkylation of phenol. J Org Chem 22:988–989CrossRefGoogle Scholar
  90. 90.
    Niederl JB (1938) Disobutylphenol synthesis-structure-properties-derivatives. Ind Eng Chem 30:1269–1274CrossRefGoogle Scholar
  91. 91.
    Sharma MM, Patwardhan AA (1990) Alkylation of phenol with 1-dodecene and diisobutylene in the presence of a cation exchanger as the catalyst. Ind Eng Chem Res 29:29CrossRefGoogle Scholar
  92. 92.
    Chaudhuri B, Sharma MM (1991) Alkylation of phenol with α-methylstyrene, propylene, butenes, isoamylene, 1-octene, and diisobutylene: heterogeneous vs homogeneous catalysts. Ind Eng Chem Res 30:227–231CrossRefGoogle Scholar
  93. 93.
    Chakrabarti A, Sharma MM (1992) Alkylation of phenol with cyclohexene catalysed by cationic ion-exchange resins and acid-treated clay: O-versus C-alkylation. React Polym 17:331–340CrossRefGoogle Scholar
  94. 94.
    Malshe VC, Sujatha ES (1997) Regeneration and reuse of cation-exchange resin catalyst used in alkylation of phenol. React Funct Polym 35:159–168CrossRefGoogle Scholar
  95. 95.
    Malshe VC, Sujatha ES (2000) Phenol based resin as alkylation catalyst. React Funct Polym 43:183–194CrossRefGoogle Scholar
  96. 96.
    Yadav GD, Rahuman MSM (2003) Efficacy of solid acids in the synthesis of butylated hydroxy anisoles by alkylation of 4-methoxyphenol with MTBE. Appl Catal A 253:113–123CrossRefGoogle Scholar
  97. 97.
    Yadav GD, Murkute AD (2004) Novel efficient mesoporous solid acid catalyst UDCaT-4: dehydration of 2-propanol and alkylation of mesitylene. Langmuir 20:11607–11619PubMedCrossRefGoogle Scholar
  98. 98.
    Yadav GD, Salgaonkar SS (2005) Selectivity engineering of 2,6-diisopropylphenol in isopropylation of phenol over Cs2.5H0.5PW12O40/K-10 clay. Ind Eng Chem Res 44:1706–1715CrossRefGoogle Scholar
  99. 99.
    Yadav GD, Pathre GS (2006) Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J Mol Catal Chem 243:77–84CrossRefGoogle Scholar
  100. 100.
    Pittman CU, Yang X, Chatterjee S, Zhang Z, Zhu X (2010) Reaction of phenol, water, acetic acid, methanol, and 2-hydroxymethylfuran with olefins as models for bio-oil upgrading. Ind Eng Chem Res 49:2003–2013CrossRefGoogle Scholar
  101. 101.
    Freire MA, Mendes DTSL, Freitas LS, Beerthuis R, Amarante SF, Ramos ALD (2017) Acid-catalyzed liquid-phase alkylation of phenol with branched and linear olefin isomers. Catal Today 289:192–203CrossRefGoogle Scholar
  102. 102.
    Ronchin L, Quartarone G, Vavasori A (2012) Kinetics and mechanism of acid catalyzed alkylation of phenol with cyclohexene in the presence of styrene divinylbenzene sulfonic resins. J Mol Catal Chem 353:192–203CrossRefGoogle Scholar
  103. 103.
    Krymkin NY, Shakun VA, Nesterova TN, Naumkin PV, Shuraev MV (2016) Theory and practice of alkyl phenol synthesis. tert-octylphenols. Ind Eng Chem Res 55:9829–9839CrossRefGoogle Scholar
  104. 104.
    Teodorescu F, Enache A, Sandulescu M (2017) Selective alkylation of m-cresol with isopropyl alcohol under solvent-free conditions. Arkivoc 5:58–66CrossRefGoogle Scholar
  105. 105.
    Ma Q, Chakraborty D, Fglioni F, Muller P, Goddard WA, Harris T, Campbell C, Tang YC (2006) Alkylation of phenol: a mechanistic view. J Phys Chem A 110:2246–2252PubMedCrossRefGoogle Scholar
  106. 106.
    Bilenchenko NV, Nesterova TN, Chernyshov DA, Shakun VA, Krymkin NY, Tarasov AV, Voronin IO (2016) Sulfonic acid cation-exchange resins in the synthesis of straight-chain alkylphenols. Catal Ind 8:16–22CrossRefGoogle Scholar
  107. 107.
    Iovel I, Goldberg YS, Shymanska M (1991) Hydroxymethylation of methylsubstituted pyrrole, thiophene, and furan in the presence of H+ cation exchangers. Chem Heterocycl Comp 27:1316–1318CrossRefGoogle Scholar
  108. 108.
    Feng XL, Guan CJ, Zhao CX (2003) Ion exchange resin catalysed reactions of indole with imines: formation of diindolylmethanes. J Chem Res (S) 11:744–745CrossRefGoogle Scholar
  109. 109.
    Feng XL, Guan CJ, Zhao CX (2004) Ion exchange resin catalyzed condensation of indole and carbonyl compounds-synthesis of bis-indolylmethanes. Synth Commun 34:487–492CrossRefGoogle Scholar
  110. 110.
    Lin ZH, Guan CJ, Feng XL, Zhao CX (2006) Synthesis of macroreticular p-(ω-sulfonic perfluoroalkylated)polystyrene ion-exchange resin and its application as solid acid catalyst. Mol Catal A Chem 247:19–26CrossRefGoogle Scholar
  111. 111.
    Magesh CJ, Nagarajan R, Karthik M, Perumal PT (2004) Synthesis and characterization of bis(indolyl)methanes, tris(indolyl)methanes and new diindolylcarbazolylmethanes mediated by Zeokarb-225, a novel, recyclable, eco-benign heterogenous catalyst. Appl Catal A Gen 266:1–10CrossRefGoogle Scholar
  112. 112.
    Surasani R, Kalita D, Chandrasekha KB (2013) Indion Ina 225H resin as a novel, selective, recyclable, eco-benign heterogeneous catalyst for the synthesis of bis(indolyl)methanes. Green Chem Lett Rev 6:113–122CrossRefGoogle Scholar
  113. 113.
    Bandini M, Fagioli M, Umani-Ronchi A (2004) Solid acid-catalysed michael-type conjugate addition of indoles to electron-poor C=C bonds: towards high atom economical semicontinuous processes. Adv Synth Catal 346:545–548CrossRefGoogle Scholar
  114. 114.
    Yadav JS, Reddy BUS, Kumar GGKSN, Rao KUR (2007) Cation-exchange resin as efficient, cost-effective and recyclable catalyst for the synthesis of 3-propargylindoles. Chem Lett 36:942–943CrossRefGoogle Scholar
  115. 115.
    Kadam S, Thirupathi P, Kim SS (2009) Amberlyst-15: an efficient and reusable catalyst for the Friedel-Crafts reactions of activated arenes and heteroarenes with α-amido sulfones. Tetrahedron 65:10383–10389CrossRefGoogle Scholar
  116. 116.
    Wang Z, Ding K, Uozumi Y (2008) An overview of heterogeneous asymmetric catalysis. In: Din K, Uozumi Y (eds) Handbook of asymmetric heterogeneous catalysis, Wiley, New YorkGoogle Scholar
  117. 117.
    Desyatkin VG, Anokhin MV, Rodionov VO, Beletskaya IP (2016) Polystyrene-supported Cu(II)-R-box as recyclable catalyst in asymmetric Friedel-Crafts reaction. Russ J Org Chem 52:1727–1737CrossRefGoogle Scholar
  118. 118.
    Akagawa K, Yamashita T, Sakamoto S, Kudo K (2009) Friedel-Crafts-type alkylation in aqueous media using resin-supported peptide catalyst having polyleucine. Tetrahedron Lett 50:5602–5604CrossRefGoogle Scholar
  119. 119.
    Akagawa K, Umezawa R, Kudo K (2012) Asymmetric one-pot sequential Friedel–Crafts-type alkylation and α-oxyamination catalyzed by a peptide and an enzyme. Beilstein J Org Chem 8:1333–1337PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yu L, Chen D, Li J, Wang PG (1997) Preparation, characterization, and synthetic uses of lanthanide (III) catalysts supported on ion exchange resins. J Org Chem 62:3575–3581CrossRefGoogle Scholar
  121. 121.
    Havránková E, Csöllei J, Pazdera P (2017) Comparative study for 3, 3′-[(4-X-phenyl)-methanediyl] bis(1H-indoles) synthesis catalyzed by Ce(III) cations. Int J Engin Res Sci 3:9–14Google Scholar
  122. 122.
    Zhu C, Shen T, Liu D, Wu J, Chen Y, Wang L, Guo K, Ying H, Ouyang P (2016) Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chem 18:2165–2174CrossRefGoogle Scholar
  123. 123.
    Iovel I, Goldberg Y, Shymanska M (1989) Hydroxymethylation of furan and its derivatives in the presence of cation-exchange resins. J Mol Cat 57:91–103CrossRefGoogle Scholar
  124. 124.
    Iovel IG, Lukevics E (1998) Hydroxymethylation and alkylation of compounds of the furan, thiophene, and pyrrole series in the presence of H+ cations (review). Chem Heterocycl Comp 34:1–12CrossRefGoogle Scholar
  125. 125.
    Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int 50:2375–2378CrossRefGoogle Scholar
  126. 126.
    Corma A, de la Torre O, Renz M (2012) Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy Environ Sci 5:6328–6344CrossRefGoogle Scholar
  127. 127.
    Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T (2012) Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. Chem Sus Chem 5:1958–1966CrossRefGoogle Scholar
  128. 128.
    Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T (2013) Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose. Bioresour Technol 134:66–72PubMedCrossRefGoogle Scholar
  129. 129.
    Li G, Li N, Li S, Wang A, Cong Y, Wang X, Zhang T (2013) Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. Chem Commun 49:5727–5729CrossRefGoogle Scholar
  130. 130.
    Li S, Li N, Li G, Wang A, Conga Y, Wang X, Zhang T (2014) Synthesis of diesel range alkanes with 2-methylfuran and mesityloxide from lignocellulose. Catal Today 234:91–99CrossRefGoogle Scholar
  131. 131.
    Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T (2014) Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose. Energy Fuels 28:5112–5118CrossRefGoogle Scholar
  132. 132.
    Deng Q, Han P, Xu J, Zou JJ, Wang L, Zhang X (2015) Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel. Chem Eng Sci 138:239–243CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elizabeth Roditi Lachter
    • 1
    Email author
  • Jorge Almeida Rodrigues
    • 1
  • Viviane Gomes Teixeira
    • 1
  • Roberta Helena Mendonça
    • 2
  • Paula Salino Ribeiro
    • 1
  • Santiago Villabona-Estupiñan
    • 1
  1. 1.Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de TecnologiaUniversidade Federal Rural do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations