Sorbitol Demineralization by Ion Exchange

  • Sabeela Beevi Ummalyma
  • Haobam Rijeeba
  • Raveendran SindhuEmail author
  • Parameswaran Binod
  • Ashok Pandey
  • Edgard Gnansounou


Sorbitol is a sugar alcohol commonly known as D-glucitol. It is synthesized from glucose by a reduction reaction altering the aldehyde group to a hydroxyl group. The body slowly metabolizes sorbitol, minimizing the possibility of increasing the insulin level, and this makes it a good sweetener for diabetic patients. Sorbitol finds diverse applications in the food industry, and its purity is a significant factor to be considered before it is used as an additive to food. Various types of ion-exchange and membrane technologies have been applied for purifying this compound. This chapter is aimed to illustrate the different ion-exchange chromatographic techniques for demineralization/deashing of sorbitol with future perspectives.


Ion exchange Sorbitol Food industry Demineralization Membrane filtration 



SBU and Rijeeba would like to acknowledge the Institute of Bioresources and Sustainable Development, a national institute under DBT, Government of India, for providing help and support. Raveendran Sindhu acknowledges the Department of Science and Technology for sanctioning a project under DST WOS-B scheme. Raveendran Sindhu and Parameswaran Binod acknowledge EPFL, Lausanne, Switzerland, for providing visiting fellowship.


  1. 1.
    Marques C,Tarek R, Sara M, Brar SK (2016) Sorbitol production from biomass and its global market platform chemical biorefinery, First Edition, p 217–227Google Scholar
  2. 2.
    Ortiz ME, Bleckwedel J, Raya RR Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726CrossRefGoogle Scholar
  3. 3.
    Celligoi, MAPC, Borsari RRJ, Buzato JB, Silva RSDSFD (2010) Evaluation of supplementation of sucrose medium on the synthesis of Zymomonas mobilisbio-products. Acta Scientiarum Biol Sci 32Google Scholar
  4. 4.
    Barros MD, Celligoi MAPC (2006) Synthesis of sorbitol by Zymomonas mobilisunder high osmotic pressure. Braz J Microbiol 37:324–328CrossRefGoogle Scholar
  5. 5.
    Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408CrossRefGoogle Scholar
  6. 6.
    Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191CrossRefGoogle Scholar
  7. 7.
    VanGorp K, Boerman E, Cavenaghi CV, Berben PH (1999) Catalytic hydrogenation of fine chemicals: sorbitol production. Catal Today 52:349–361CrossRefGoogle Scholar
  8. 8.
    Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical Excipients. Pharmaceutical Press. Sambhakar S, Singh B, Paliwal S, Mishra PR (2012) Sorbitol based proniosomes to improve permeability and stability of an oral CephalosporinGoogle Scholar
  9. 9.
    Schiweck HEA (2008) Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, Sugar AlcoholsGoogle Scholar
  10. 10.
    Dies RC, Kearsley MW (2012) Sorbitol and Mannitol. Sweeteners and sugar alternatives in food technology. Ames Oxford 2:249–261Google Scholar
  11. 11.
    Chen X, Wang X, Yao S, Mu X (2013) Hydrogenolysis of biomass derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal Commun 39:86–89CrossRefGoogle Scholar
  12. 12.
    Yang FC, Lim YH (1997) Kinetic study of the bioconversion of D-sorbitol to L-sorbose by Acetobacter pasteurianus. Process Biochem 32:233–236CrossRefGoogle Scholar
  13. 13.
    Sefcovicova J, Filip J, Tomic P, Gemeiner P, BuckoM Magdolen P, Tkac J (2011) A biopolymer based carbon nanotube interface integrated with a redox shuttle a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol. Microchim Acta 175:21–30CrossRefGoogle Scholar
  14. 14.
    Shwide SC, Swift C, Ross T (2012) Non-nutritive sweeteners: where are we today? Diabetes Spectrum 25:104–110CrossRefGoogle Scholar
  15. 15.
    Radhika GS, Moorthy SN (2009) Sugar alcohols—a review. Trends Carbohydr Res 1:71–79Google Scholar
  16. 16.
    Arcos JA, Bernabé M, Otero C (1998) Quantitative enzymatic production of 1,6-diacyl sorbitol esters. Biotechnol Bioeng 60:53–60CrossRefGoogle Scholar
  17. 17.
    Hyams JS (1982) Chronic abdominal pain caused by sorbitol malabsorption. J Pediatrics 100:772–773CrossRefGoogle Scholar
  18. 18.
    Saniocki I, Sakmann A, Leopold CS (2013) Evaluation of the suitability of various lubricants for direct compaction of sorbitol tablet formulations. J Excipients Food Chem 4:169–182Google Scholar
  19. 19.
    Sambhakar S, Singh B, Paliwal S, Mishra PR (2012) Sorbitol based proniosomes to improve the permeability andstability of an oral Cephlosp orinGoogle Scholar
  20. 20.
    Lai WC, Cheng LT (2014) Preparation and characterization of novel poly(vinylidene fluoride) membranes using self-assembled dibenzylidene sorbitol for membrane distillation. Desalination 332:7–17CrossRefGoogle Scholar
  21. 21.
    Aminah A, Jusoff K, St.Hadijah, Nuraeni R., Palad Marliana S, Muchtar AH, Nonci, M(2013) Increasing soybean (glycine max L) drought resistant with osmolit sorbitol. Mod Appl Sci 7:78–85Google Scholar
  22. 22.
    Vilcocq L, Koerin R, Cabiac A, Especel C, Lacombe S, Duprez D (2014) New bifunctional catalytic systems for sorbitol transformation into biofuels. Appl Catal B Environ 499–508CrossRefGoogle Scholar
  23. 23.
    Bhusnure OG, Mali SN (2015) Recent trends in ion exchange chromatography. Int J Pharm Drug Anal 3(12):403–416Google Scholar
  24. 24.
    Alios J, Rainer H (2009) Ion exchange chromatography. Guide to protein purification. Methods Enzymol Elsevier 463:349–371CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sabeela Beevi Ummalyma
    • 1
  • Haobam Rijeeba
    • 1
  • Raveendran Sindhu
    • 2
    Email author
  • Parameswaran Binod
    • 2
  • Ashok Pandey
    • 3
  • Edgard Gnansounou
    • 4
  1. 1.Department of Biotechnology, Government of IndiaInstitute of Bioresource and Sustainable DevelopmentTakyelpat, ImphalIndia
  2. 2.Microbial Processes and Technology DivisionCSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST)TrivandrumIndia
  3. 3.Center for Innovation and Translational ResearchCSIR- Indian Institute for Toxicology Research (CSIR-IITR)LucknowIndia
  4. 4.Bioenergy and Energy Planning Research GroupEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations