Advertisement

Chromatographic Separation of Amino Acids

  • Kartick Chandra Majhi
  • Paramita Karfa
  • Rashmi MadhuriEmail author
Chapter

Abstract

Amino acids are very important in our daily life as energy sources and have several functions in metabolism since amino acids are the main key elements for the formation of proteins and peptides. All the amino acids contain a chiral carbon atom and they exist in d- and l-forms except one amino acids, i.e., glycine. Depending upon their d- or l-form, they have different biological activities in living systems. It became evident that the potential biological or pharmacological applications of amino acids are greatly restricted to the one form of the enantiomers. So, the development of methods for their separation has attracted the interest of researchers. In this chapter, we have briefly discussed the separation of amino acids with the help of different chromatographic techniques such as liquid chromatography (LC), gas chromatography (GC), thin-layer chromatography (TLC), and countercurrent chromatography (CCC). Additionally, the role of capillary electrophoresis (CE) has also been discussed toward amino acid separation. To improve the sensitivity, specificity, and applications, chromatographic techniques have been coupled with other analytical techniques, known as hyphenated techniques. In this chapter, the classification of hyphenated techniques and their roles is also discussed in addition to the advantages of chromatographic techniques over the other separation techniques. Chromatographic techniques are simple in handling, fast in the analysis, and can be used for small as well as large-scale separations with good separation efficiency and high accuracy.

Abbreviation List

β-CD

β-cyclodextrin

(S)-NIFE

(S)-N-(4-nitrophenoxycarbonyl)-l-phenylalanine-2-methoxyethyl ester

ABD-F

4-aminosulphonyl-7-fluro-2,1,3-benzoxadiazol

ACC

Adsorption column chromatography

ACN

Acetonitrile

Ala

Alanine

Arg

Arginine

Asn

Asparagine

Asp

Aspartic acid

CCC

Counter current chromatography

CE

Capillary electrophoresis

CEC

Capillary electro chromatography

CE-MS

Capillary electrophoresis-mass spectrometry

CGE

Capillary gel electrophoresis

CI

Chemical ionization

CIEF

Capillary isoelectric focusing

CITP

Capillary isotachophoresis

CSF

Cerebrospinal fluid

CSP

Chiral stationary phase

Cys

Cysteine

CZE

Capillary zone electrophoresis

DBD-F

4-(N,N-dimethylaminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole

DEX

Dextrin

DM-β-CD

Heptakis (2,6-di-O-methyl)-β-cyclodextrin

EC

Ethyl chloroformate

EI

Electron impact ionization

ESI-MS

Electron spray ionization-mass spectrometry

FID

Flame ionization detection

FITC

Fluorescein isothiocyanate

FLEC

(+)-1-(9-lluorenyl) ethyl chloroformate

FMOC

Fluorenylmethyloxycarbonyl chloride

GC

Gas chromatography

GC-MS

Gas chromatography mass spectrometry

GLC

Gas liquid chromatography

Gln

Glutamine

Glu

Glutamic acid

Gly

Glycine

GSC

Gas-solid chromatography

His

Histidine

HP-β-CD

Hydroxypropyl-β-cyclodextrin

HPA-β-CD

6-monodeoxy-6-mono (3-hydroxy)-propylamino-β-cyclodextrin

HPLC

High performance liquid chromatography

IE-HPLC

Ion exchange high performance liquid chromatography

Ile

Isoleucine

IR

Infrared spectroscopy

LC

Liquid chromatography

LC-MS

Liquid chromatography-mass spectrometry

LC-MS-MS

Liquid chromatography-mass spectrometry-mass spectrometry

Leu

Leucine

LIF

Laser induced fluroscence

LLC

Liquid liquid chromatography

Lys

Lysine

Marfey’s reagent

N-α-(2, 4-dinitro-5-fluorophenyl)-l-alaninamide

MEKC

Micellar electrokinetic chromatography

MeOH

Methanol

Met

Methionine

MRM

Multiple reaction monitoring

MS

Mass spectrometry

MTFMPA

Methoxy trifluoromethylphenylacetyl chloride

NAC

N-acetyl-l cysteine

NBD

4-fluoro-7-nitrobenzofurazan

NBD-F

4-fluro-7-nitro-2,1,3-benzoxadiazole

NBE

n-butyl esters

NDA

Naphthalene dicarboxaldehyde

NMR

Nuclear magnetic resonance

NpF

N-heptaflurobutylryl

Npf

N-pentafluoropropionyl

NP-HPLC

Normal phase high performance liquid chromatography

NRMC

N-(R)-mandelyl-(S)-cysteine

N-Tfac

N-trifluroacetyl

OPA

o-phthaldialdehyde

OS-γ-CD

Octakis (2,3-dihydroxy-6-O-sulfo)-γ-cyclodextrin

PC

Paper chromatography

PCC

Partition column chromatography

Phe

Phenylalanine

Pro

Proline

RP-HPLC

Reversed phase high performance liquid chromatography

RPPC

Reversed phase partition chromatography

SC-HPLC

Super critical high performance chromatography

SDS

Sodium dodecyl sulphate

SE-HPLC

Size exclusion high performance liquid chromatography

Ser

Serine

SIM

Selected ion monitoring

SLC

Solid liquid chromatography

TEA

Triethanolamine

TEAA

Tetra ethyl ammonium acetate

Thr

Threonine

TLC

Thin layer chromatography

TLC

Thin layer chromatography

TM-β-CD

Heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin

TOF

Time of flight

TOFR

Time of flight reflection

Trp

Tryptophan

Try

Tyrosine

UPLC-MS/MS

Ultra-performance mass spectroscopy/mass spectroscopy

UV

Ultraviolet

Val

Valine

Notes

Acknowledgements

Mr. Majhi has given the major contribution in writing this chapter along with drawing the figures and tables, taking the copyright permission, etc.

References

  1. 1.
    Ferreira FD, Rodrigues AL (2008) Separation and purification of amino acids. Diss. Universidade do Porto, PortugalGoogle Scholar
  2. 2.
    Cesari M, Rossi GP, Sticchi D, Pessina AC (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15:140–147PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479PubMedCrossRefGoogle Scholar
  4. 4.
    Bhushan R, Joshi S (1993) Resolution of enantiomers of amino acids by HPLC. Biomed Chromatogr 7:235–250PubMedCrossRefGoogle Scholar
  5. 5.
    Pathak AK (2014) Stabilizing the zwitter-ionic form of amino acids in the gas phase: an ab initio study on the minimum number of solvents and ions. Chem Phys Lett 610:345–350CrossRefGoogle Scholar
  6. 6.
    Hoeprich PD (1965) Alanine: cyeloserine antagonism VI demonstration of d-alanine in the serum of guinea pigs and mice. J Biol Chem 240:1654–1660PubMedGoogle Scholar
  7. 7.
    Bruckner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55PubMedCrossRefGoogle Scholar
  8. 8.
    Patzold R, Bruckner H (2006) Gas chromatographic determination and mechanism of formation of d-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31:63–72PubMedCrossRefGoogle Scholar
  9. 9.
    Lupke M, Bruckner H (1991) Chiral phase capillary gas chromatography. Chromatographia 31:123–124CrossRefGoogle Scholar
  10. 10.
    Bruckner H, Erbe T (2000) Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J Chromatogr A 881:81–91PubMedCrossRefGoogle Scholar
  11. 11.
    Rubio Barroso S, Santos Delgado MJ, Martin Olivar C, Polo Diez LM (2006) Indirect chiral HPLC determination and fluorimetric detection of d-amino acids in milk and oyster samples. J Dairy Sci 89:82–89PubMedCrossRefGoogle Scholar
  12. 12.
    Ali Mohammed HS, Patzold Bruckner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38:951–958CrossRefGoogle Scholar
  13. 13.
    Hamase K, Morikawa A, Etoh S, Tojo Y, Miyoshi Y, Zaitsu K (2009) Analysis of small amounts of d-amino acids and the study of their physiological functions in mammals. Anal Sci 25:961–968PubMedCrossRefGoogle Scholar
  14. 14.
    Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353PubMedCrossRefGoogle Scholar
  15. 15.
    Gogami Y, Okada K, Oikawa T (2011) High-performance liquid chromatography analysis of naturally occurring d-amino acids in sake. J Chromatogr B 879:3259–3267CrossRefGoogle Scholar
  16. 16.
    Martinez Rodriguez S, Martinez Gomez AI, Rodriguez Vico F, Clemente Jimenez JM, Heras Vazquez L, Javier F (2010) Natural occurrence and industrial applications of d-amino acids: an overview. Chem Biodivers 7:1531–1548PubMedCrossRefGoogle Scholar
  17. 17.
    Konya Y, Bamba T, Fukusaki E (2015) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353PubMedCrossRefGoogle Scholar
  18. 18.
    Skog DA, Holler FT, Neiman TA (5th ed) (1998) Principles of instrumental analysis. Harcourt Brace College Publisher, Orlando, pp 790, 906 & 947Google Scholar
  19. 19.
    Lorenzo MP, Dudzik D, Varas E, Gibellini M, Skotnicki M, Zorawski M, Garcia A (2015) Optimization and validation of a chiral GC–MS method for the determination of free d-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J Pharm Biomed Anal 107:480–487PubMedCrossRefGoogle Scholar
  20. 20.
    Bhushan R, Bruckner H (2004) Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids 27:231–247PubMedCrossRefGoogle Scholar
  21. 21.
    Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176PubMedCrossRefGoogle Scholar
  22. 22.
    Frank H, Nicholson GJ, Bayer E (1978) Enantiomer labelling, a method for the quantitative analysis of amino acids. J Chromatogr 167:187–196PubMedCrossRefGoogle Scholar
  23. 23.
    Menestrina F, Grisales OJ, Castells CB (2016) Chiral analysis of derivatized amino acids from kefir by gas chromatography. Microchem J 128:267–273CrossRefGoogle Scholar
  24. 24.
    Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr 552:289–299CrossRefGoogle Scholar
  25. 25.
    Pollock GE (1967) Separation of amino acids by gas chromatography using new fluoro derivatives. Anal Chem 39:1194–1196PubMedCrossRefGoogle Scholar
  26. 26.
    Fox S, Strasdeit H, Haasmann S, Bruckner H (2015) Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase. J Chromatogr A 1411:101–109PubMedCrossRefGoogle Scholar
  27. 27.
    Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr A 1180:131–137PubMedCrossRefGoogle Scholar
  28. 28.
    Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36PubMedCrossRefGoogle Scholar
  29. 29.
    Schurig V (1994) Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr A 666:111–129CrossRefGoogle Scholar
  30. 30.
    Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr A 552:289–299CrossRefGoogle Scholar
  31. 31.
    Bruckner H, Lupke M (1991) Determination of amino acid enantiomers in orange juices by chiral phase capillary gas chromatography. Chromatographia 31:123–128CrossRefGoogle Scholar
  32. 32.
    Bruckner H, Hausch M (1993) Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J Chromatogr B Biomed Sci Appl 614:7–17CrossRefGoogle Scholar
  33. 33.
    Patzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473PubMedCrossRefGoogle Scholar
  34. 34.
    Schieber A, Bruckner H (2001) Ascertainment of d-amino acids in germ free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262PubMedCrossRefGoogle Scholar
  35. 35.
    Bart HJ, Kostova A (2007) Preparative chromatographic separation of amino acid racemic mixtures I. Adsorpt isotherms. Sep Purif Technol 54:340–348CrossRefGoogle Scholar
  36. 36.
    Fukushima T, Kato M, Santa T, Imai K (1995) Enantiomeric separation and sensitive determination of d, l-amino acids derivatized with fluorogenic benzofurazan reagents on pirkle type stationary phases. Biomed Chromatogr 9:10–17PubMedCrossRefGoogle Scholar
  37. 37.
    Bhushan R, Joshi S (1993) Resolution of enantiomers of amino acids by HPLC. Biomed Chromatogr 7:235–250PubMedCrossRefGoogle Scholar
  38. 38.
    Vera CM, Shock D, Dennis GR, Farrell W, Shalliker RA (2017) Comparing the selectivity and chiral separation of d- and l-fluorenylmethyloxycarbonyl chloride (FMOC) protected amino acids in analytical High Performance Liquid Chromatography and Supercritical Fluid Chromatography; evaluating throughput, economic and environmental impact. J Chromatogr A 1493:10–18PubMedCrossRefGoogle Scholar
  39. 39.
    Toyo’oka T, Imai K (1984) New fluorogenic reagent having halogenobenzofurazan structure for thiols: 4-(aminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole. Anal Chem 56:2461–2464CrossRefGoogle Scholar
  40. 40.
    Watanabe Y, Imai K (1981) High-performance liquid chromatography and sensitive detection of amino acids derivatized with 7-fluoro-4-nitrobenzo-2-oxa-1, 3-diazole. Anal Biochem 116:471–472PubMedCrossRefGoogle Scholar
  41. 41.
    Toyo’oka T, Suzuki T, Saito Y, Uzu S, Imai K (1989a) Evaluation of benzofurazan derivatives as fluorogenic reagents for thiols and amines using high-performance liquid chromatography. Analyst 114:1233–1240CrossRefGoogle Scholar
  42. 42.
    Pirkle WH, Finn JM, Schreiner JL, Hamper BC (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J A C S 103:3964–3966CrossRefGoogle Scholar
  43. 43.
    Oguri S, Nomura M, Fujita Y (2005) A new strategy for the selective determination of d-amino acids: enzymatic and chemical modifications for pre-column derivatization. J Chromatogr A 1078:51–58PubMedCrossRefGoogle Scholar
  44. 44.
    Rubio-Barroso S, Santos-Delgado MJ, Martín-Olivar C, Polo-Díez LM (2006) Indirect chiral HPLC determination and fluorimetric detection of d-amino acids in milk and oyster samples. J Dairy Sci 89:82–89PubMedCrossRefGoogle Scholar
  45. 45.
    Goodnough DB, Lutz MP, Wood PL (1995) Separation and quantification of d-and l-phosphoserine in rat brain using Nα-(2, 4-dinitro-5-fluorophenyl)-l-alaninamide (Marfey’s reagent) by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B: Biomed Sci and Appl 672:290–294CrossRefGoogle Scholar
  46. 46.
    Asakura S, Konno R (1997) Origin of d-serine present in urine of mutant mice lacking d-amino-acid oxidase activity. Amino Acids 12:213–223CrossRefGoogle Scholar
  47. 47.
    Nagata Y, Shoji R, Yonezawa S, Oda S (1997) Brain d-serine and tyrosine levels in ataxic mutant mice. Amino Acids 12:95–100CrossRefGoogle Scholar
  48. 48.
    Nagata Y, Borghi M, Fisher GH, D’Aniello A (1995) Free d-serine concentration in normal and Alzheimer human brain. Brain Res Bull 38:181–183PubMedCrossRefGoogle Scholar
  49. 49.
    Guranda DT, Kudryavtsev PA, Khimiuk AY, Svedas VK (2005) Efficient enantiomeric analysis of primary amines and amino alcohols by high-performance liquid chromatography with precolumn derivatization using novel chiral SH-reagent N-(R)-mandelyl-(S)-cysteine. J Chromatogr A 1095:89–93PubMedCrossRefGoogle Scholar
  50. 50.
    Peter A, Vekes E, Gera L, Stewart JM, Armstrong DW (2002) A comparison of the direct and indirect LC methods for separating enantiomers of unusual glycine and alanine amino acid analogues. Chromatographia 56:S79–S89CrossRefGoogle Scholar
  51. 51.
    Montes Bayon M, B’Hymer C, de Leon CP, Caruso JA (2001) Resolution of seleno-amino acid optical isomers using chiral derivatization and inductively coupled plasma mass spectrometric (ICP-MS) detection Presented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehamer, Norway, February 4–8, 2001. JAAS 16:945–950CrossRefGoogle Scholar
  52. 52.
    Peter A, Vekes E, Torok G (2000) Application of (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester as a new chiral derivatizing agent for proteinogenic amino acid analysis by high-performance liquid chromatography. Chromatographia 52:821–826CrossRefGoogle Scholar
  53. 53.
    Einarsson S, Josefsson B, Moeller P, Sanchez D (1987) Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl) ethyl chloroformate and reversed-phase liquid chromatography. Anal Chem 59:1191–1195PubMedCrossRefGoogle Scholar
  54. 54.
    Jin D, Miyahara T, Oe T, Toyo’oka T (1999) Determination of d-amino acids labeled with fluorescent chiral reagents, R (2)- and S(1)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles, in biological and food samples by liquid chromatography. Anal Biochem 269:124–132PubMedCrossRefGoogle Scholar
  55. 55.
    Miyazawa T, Minowa H, Imagawa K, Yamada T (1997) Enantiomeric separation of non-protein amino acids by chiral ligand-exchange high-performance liquid chromatography. Anal lett 30:867–882CrossRefGoogle Scholar
  56. 56.
    Remsburg JW, Armstrong DW, Peter A, Toth G (2007) LC enantiomeric separation of unusual amino acids using cyclodextrin-based stationary phases. J Liq Chromatogr Relat Technol 31:219–230CrossRefGoogle Scholar
  57. 57.
    Berkecz R, Ilisz I, Misicka A, Tymecka D, Fulop F, Choi HJ, Peter A (2009) HPLC enantioseparation of β2-homoamino acids using crown ether-based chiral stationary phase. J Sep Sci 32:981–987PubMedCrossRefGoogle Scholar
  58. 58.
    Lee T, Lee W, Hyun MH, Park JH (2010) Enantioseparation of α-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. J Chromatogr A 1217:1425–1428PubMedCrossRefGoogle Scholar
  59. 59.
    Peter A, Torok G, Armstrong DW (1998) High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 793:283–296PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang X, Bao Y, Huang K, Barnett-Rundlett KL, Armstrong DW (2010) Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality: pharmacol Biol Chem Consequences Mol. Asymmetry 22:495–513CrossRefGoogle Scholar
  61. 61.
    Bechtold M, Felinger A, Held M, Panke S (2007) Adsorption behavior of a teicoplanin aglycone bonded stationary phase under harsh overload conditions. J Chromatogr A 1154:277–286PubMedCrossRefGoogle Scholar
  62. 62.
    Peter A, Torok G, Armstrong DW, Toth G, Tourwe D (2000) High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin a chiral stationary phase. J Chromatogr A 904:1–15PubMedCrossRefGoogle Scholar
  63. 63.
    Peter ALL, Ferenc F, Daniel WA (2001) High-performance liquid chromatographic enantioseparation of β-amino acids. J Chromatogr A 926:229–238PubMedCrossRefGoogle Scholar
  64. 64.
    Peter A, Vekes E, Arki A, Toure D, Lindner W (2003) Direct high-performance liquid chromatographic enantioseparation of α-substituted proline analogues on a quinine-derived chiral anion-exchanger stationary phase. J Sep Sci 26:1125–1132CrossRefGoogle Scholar
  65. 65.
    Miyazawa T, Shindo Y, Yamada T, Kuwata S (1993) Enantiomeric separation of N-protected non-protein amino acid esters by chiral high-performance liquid chromatography. Anal Lett 26:457–473CrossRefGoogle Scholar
  66. 66.
    Lee KA, Yeo S, Kim KH, Lee W, Kang JS (2008) Enantioseparation of N-fluorenylmethoxycarbonyl & #x03B1;-amino acids on polysaccharide-derived chiral stationary phases by reverse mode liquid chromatography. J Pharm Biomed Anal 46:914–919PubMedCrossRefGoogle Scholar
  67. 67.
    Huanga XY, Peja D, Liua JF, Dia LD (2018) A review on chiral separation by counter-current chromatography: development, applications and future outlook. J Chromatogr A 1531:1–12CrossRefGoogle Scholar
  68. 68.
    Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145–168PubMedCrossRefGoogle Scholar
  69. 69.
    Gavioli E, Maier NM, Minguillon C, Lindner W (2004) Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Anal Chem 76:5837–5848PubMedCrossRefGoogle Scholar
  70. 70.
    Sutherland I, Hewitson P, Ignatova S (2009) Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J Chromatogr A 1216:8787–8792PubMedCrossRefGoogle Scholar
  71. 71.
    Bhushan R, Martens J (1997) Direct resolution of enantiomers by impregnated TLC. Biomed Chromatogr II: 280–285PubMedCrossRefGoogle Scholar
  72. 72.
    Sherma J, Fried B (3rd ed, revised and expanded) (2005) Handbook of Thin-Layer Chromatography. Lafayette College Easton, Pennsylvania, U.S.AGoogle Scholar
  73. 73.
    Bhushan R, Ali I (1987) Resolution of enantiomeric mixtures of phenylthiohydantoin amino acids on (+)-tartaric acid-impregnated silica gel plates. J Chromatogr 392:460–463PubMedCrossRefGoogle Scholar
  74. 74.
    Borke ML, Kirch ER (1953) Separation of some of the opium alkaloids by surface chromatography. J Am Pharm Assoc Sci Ed 42:627–629CrossRefGoogle Scholar
  75. 75.
    Korzun BP, Dorfman L, Brody SM (1963) Separation of sonne alkaloids, steroids, and synthetic compounds by thin-layer chromatography. Anal Chem 35:950CrossRefGoogle Scholar
  76. 76.
    Sherma J, kowalska T (2006) Preparative layer chromatographyGoogle Scholar
  77. 77.
    Alak A, Armstrong DW (1986) Thin-layer chromatographic separation of optical, geometrical, and structural isomers. Anal Chem 58:582–584CrossRefGoogle Scholar
  78. 78.
    Grinberg N, Weinstein S (1984) Enantiomeric separation of Dns-amino acids by reversed-phase thin layer chromatography. J Chromatogr A 303:251–255CrossRefGoogle Scholar
  79. 79.
    Virtanen R, Kivalo P (1969) Quantitative high-voltage zone electrophoresis method. Suomen Kemistilehti B 42:182Google Scholar
  80. 80.
    Jorgensen JW, Lukacs KD (1981) Zone electrophoresis is open-tubular glass capillaries. Anal Chem 53:1298–1302CrossRefGoogle Scholar
  81. 81.
    Whatley H (2001) Basic principles and modes of capillary electrophoresis. In: Clinical and forensic applications of capillary electrophoresis. Humana Press, Totowa, NJ pp 21–58Google Scholar
  82. 82.
    Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339PubMedCrossRefGoogle Scholar
  83. 83.
    Thorsen G, Engstrom A, Josefsson B (1997) Enantiomeric determination of amino compounds with high sensitivity using the chiral reagents (+)- and (−)-1-(9-anthryl)-2-propyl chloroformate. J Chromatogr A 786:347–354PubMedCrossRefGoogle Scholar
  84. 84.
    Teruhisa Ueda, Kitmura F, Mitchell R, Metcalf T, Kuwana T, Nakamoto A (1991) Chiral separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal Chem 63:2979–2981CrossRefGoogle Scholar
  85. 85.
    Cole OR, Sepaniak JM, Hinze WL (1990) Optimization of binaphthyl enantiomer separations by capillary zone electrophoresis using mobile phases containing bile salts and organic solvent. J High Resolut Chromatogr 13:579–582CrossRefGoogle Scholar
  86. 86.
    Otsuka K, Kawahara L, Tatekawa K, Terabe S (1991) Chiral separations by micellar electrokinetic chromatography with sodium N-dodecanoyl-l-valinate. J Chromatogr 559:209–214CrossRefGoogle Scholar
  87. 87.
    Kuhn R, Stoecklin F, Erni F (1992) Chiral separations by host-guest complexation with cyclodextrin and crown ether in capillary zone electrophoresis. Chromatographia 33:32–36CrossRefGoogle Scholar
  88. 88.
    Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339PubMedCrossRefGoogle Scholar
  89. 89.
    Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339PubMedCrossRefGoogle Scholar
  90. 90.
    Zhao S, Yuan H, Xiao D (2005) Detection of d-Serine in rat brain by capillary electrophoresis with laser induced fluorescence detection. J Chromatogr B A 822:334–338CrossRefGoogle Scholar
  91. 91.
    Wagner Z, Tabi T, Jako T, Zachar G, Csillag A, Szoko E (2012) Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 404:2363–2368PubMedCrossRefGoogle Scholar
  92. 92.
    Jako T, Szabo E, Tabi T, Zachar G, Csillag A, Szoko E (2014) Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 35:2870–2876PubMedCrossRefGoogle Scholar
  93. 93.
    Lorenzo MP, Villasenor A, Ramamoorthy A, Garcia A (2013) Optimization and validation of a capillary electrophoresis laser-induced fluorescence method for amino acids determination in human plasma: Application to bipolar disorder study. Electrophoresis 34:1701–1709PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Singh NS, Paul RK, Sichler M, Moaddel R, Bernier M, Wainer IW (2012) Capillary electrophoresis–laser-induced fluorescence (CE-LIF) assay for measurement of intracellular d-serine and serine racemase activity. Anal Biochem 421:460–466PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao S, Liu YM (2001) Electrophoretic separation of tryptophan enantiomers in biological samples. Electrophoresis 22:2769–2774PubMedCrossRefGoogle Scholar
  96. 96.
    Zhao S, Feng Y, LeBlanc MH, Liu YM (2001) Determination of free aspartic acid enantiomers in rat brain by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 762:97–101PubMedCrossRefGoogle Scholar
  97. 97.
    Li H, Li C, Yan ZY, Yang J, Chen H (2010) Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J Neurosci Methods 189:162–168PubMedCrossRefGoogle Scholar
  98. 98.
    Fradi I, Servais AC, Lamalle C, Kallel M, Abidi M, Crommen J, Fillet M (2012) Chemo-and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization. J Chromatogr A 1267:121–126PubMedCrossRefGoogle Scholar
  99. 99.
    Londhe SV, Mulgund SV, Chitre TS, Mallade PS, Barival JB, Jain KS (2008) Hyphenated techniques in analytical world. Indian J Pharm educ Res dec 42:4Google Scholar
  100. 100.
    Kalpesh NP, Jayvadan KP, Manish PP, Ganesh CR, Hitesh AP (2010) Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods 1:2–13CrossRefGoogle Scholar
  101. 101.
    Phalke P, Kavade S (2013) Review on hyphenated techniques. Int J Chem Stud 1:157–165Google Scholar
  102. 102.
    Singh S, Handa T, Narayanam M, Sahu A, Junwal M, Shah RP (2012) A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products. J Pharm Biomed Anal 69:148–173PubMedCrossRefGoogle Scholar
  103. 103.
    Guo X, Lankmayr E (2012) Hyphenated techniques in gas chromatography. In: Advanced gas chromatography-progress in agricultural, biomedical and industrial applications. InTechGoogle Scholar
  104. 104.
    Bruckner H, Schieber A (2000) Determination of free d-amino acids in mammalia by chiral gas chromatography-mass spectrometry. J Sep Sci 23:576–582Google Scholar
  105. 105.
    Culea M, Iordache AM, Horj E, Mesaros C, Bleiziffer R (2016) GC-MS Methods for amino acids determination in different biological extracts. Studia Ubb Chemia LXI 61:213–222Google Scholar
  106. 106.
    Patzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473PubMedCrossRefGoogle Scholar
  107. 107.
    Schieber A, Bruckner H (2001) Ascertainment of d-amino acids in germ free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262PubMedCrossRefGoogle Scholar
  108. 108.
    Hashimoto A, Nishikawa T, Oka T, Hayashi T, Takahashi K (1993) Widespread distribution of free d-aspartate in rat periphery. FEBS Lett 331:4–8PubMedCrossRefGoogle Scholar
  109. 109.
    Hasegawa H, Shinohara Y, Masuda N, Hashimoto T, Ichida K (2011) Simultaneous determination of serine enantiomers in plasma using mosher’s reagent and stable isotope dilution gas chromatography-mass spectrometry. J Mass Spectrom 46:502–507PubMedCrossRefGoogle Scholar
  110. 110.
    Waldhier MC, Almstetter MF, Nurnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free d-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218:4537–4544PubMedCrossRefGoogle Scholar
  111. 111.
    Patzold R, Schieber A, Bruckner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473PubMedCrossRefGoogle Scholar
  112. 112.
    Bruckner H, Schieber A (2001) Determination of amino acid enantiomers in human urine and blood serum by gas chromatography-mass spectrometry. Biomed Chromatogr 15:166–172PubMedCrossRefGoogle Scholar
  113. 113.
    Schieber A, Bruckner H, Rupp-Classen M, Nowitzki-Gfimm S, Classen HG (1997) Evaluation of d-amino acid levels in rat by gas chromatography-selected ion monitoring mass spectrometry: no evidence for subacute toxicity of orally fed d-proline and d-aspartic acid. J Chromatogr B Biomed Sci Appl 69:1–12CrossRefGoogle Scholar
  114. 114.
    Jin D, Miyahara T, Oe T, Toyo’oka T (1999) Determination of d-amino acids labeled with fluorescent chiral reagents, R (−)-and S (+)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazoles, in biological and food samples by liquid chromatography. Anal Biochem 269:124–132PubMedCrossRefGoogle Scholar
  115. 115.
    Konya Y, Bamba T, Fukusaki E (2016) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353PubMedCrossRefGoogle Scholar
  116. 116.
    Rojas C, Alt J, Ator NA, Thomas AG, Wu Y, Hin N, Slusher BS (2016) d-amino-acid oxidase inhibition increases d-serine plasma levels in mouse but not in monkey or dog. Neuropsychopharmacology 41:1610PubMedCrossRefGoogle Scholar
  117. 117.
    Sakamoto T, Kuwabara R, Takahashi S, Onozato M, Ichiba H, Iizuka H, Fukushima T (2016) Determination of d-serine in human serum by LC-MS/MS using a triazole-bonded column after pre-column derivatization with (S)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazole. Anal Bioanal Chem 408:517–526PubMedCrossRefGoogle Scholar
  118. 118.
    Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, Moaddel R (2014) Development and validation of a sensitive LC–MS/MS method for the determination of d-serine in human plasma. J Pharm Biomed Anal 89:1–5PubMedCrossRefGoogle Scholar
  119. 119.
    Nagata Y, Higashi M, Ishii Y, Sano H, Tanigawa M, Nagata K, Urade M (2006) The presence of high concentrations of free d-amino acids in human saliva. Life Sci 78:1677–1681PubMedCrossRefGoogle Scholar
  120. 120.
    Ohnuma T, Sakai Y, Maeshima H, Hatano T, Hanzawa R, Abe S, Arai H (2008) Changes in plasma glycine, L-serine, and d-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry 32:1905–1912PubMedCrossRefGoogle Scholar
  121. 121.
    Berna MJ, Ackermann BL (2007) Quantification of serine enantiomers in rat brain microdialysate using Marfey’s reagent and LC/MS/MS. J Chromatogr B 846:359–363CrossRefGoogle Scholar
  122. 122.
    Fuchs SA, de Barse MM, Roeleveld MW, Hendriks M, Dorland L, Klomp LW, de Koning TJ (2008) Two mass-spectrometric techniques for quantifying serine enantiomers and glycine in cerebrospinal fluid: potential confounders and age-dependent ranges. Clin Chem 54:1443–1450PubMedCrossRefGoogle Scholar
  123. 123.
    Luykx JJ, Bakker SC, Van Boxmeer L, Vinkers CH, Smeenk HE, Visser WF, Van Dongen EP (2013) d-amino acid aberrations in cerebrospinal fluid and plasma of smokers. Neuropsychopharmacology 38:2019PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Xing Y, Li X, Guo X, Cui Y (2016) Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: application to explore the potential relationship between Alzheimer’s disease and d-amino acid level alterations. Anal Bioanal Chem 408:141–150PubMedCrossRefGoogle Scholar
  125. 125.
    Mochizuki T, Takayama T, Todoroki K, Inoue K, Min JZ, Toyooka T (2015) Towards the chiral metabolomics: Liquid chromatography–mass spectrometry based dl-amino acid analysis after labeling with a new chiral reagent, (S)-2, 5-dioxopyrrolidin-1-yl-1-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl) pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers. Anal Chim Acta 875:73–82PubMedCrossRefGoogle Scholar
  126. 126.
    Karakawa S, Shimbo K, Yamada N, Mizukoshi T, Miyano H, Mita M, Hamase K (2015) Simultaneous analysis of d-alanine, d-aspartic acid, and d-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J Pharm Biomed Anal 115:123–129PubMedCrossRefGoogle Scholar
  127. 127.
    Sugimoto H, Kakehi M, Jinno F (2015) Bioanalytical method for the simultaneous determination of d-and l-serine in human plasma by LC/MS/MS. Anal Biochem 487:38–44PubMedCrossRefGoogle Scholar
  128. 128.
    Kinoshita K, Jingu S, Yamaguchi JI (2013) A surrogate analyte method to determine d-serine in mouse brain using liquid chromatography–tandem mass spectrometry. Anal Biochem 432:124–130PubMedCrossRefGoogle Scholar
  129. 129.
    Fukushima T, Kato M, Santa T, Imai K (1995) Enantiomeric separation and sensitive determination of D, L-amino acids derivatized with fluorogenic benzofurazan reagents on pirkle type stationary phases. Biomed Chromatogr 9:10–17PubMedCrossRefGoogle Scholar
  130. 130.
    Konya Y, Bamba T, Fukusaki E (2015) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353PubMedCrossRefGoogle Scholar
  131. 131.
    Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM (2006) Assay of trace d-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 78:8121–8128PubMedCrossRefGoogle Scholar
  132. 132.
    Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, Moaddel R (2014) Development and validation of a sensitive LC-MS/MS method for the determination of d-serine in human plasma. J Pharm Biomed Anal 89:1–5PubMedCrossRefGoogle Scholar
  133. 133.
    Van der Greef J, Niessen WMA (1992) Hyphenated methods in mass spectrometry. Int J Mass Spectrom Ion Processes 12:857–873CrossRefGoogle Scholar
  134. 134.
    Niessen WMA, Tjaden UR, van der Greef J (1993) Capillary electrophoresis-mass spectrometry. J Chromatogr 636:3–19CrossRefGoogle Scholar
  135. 135.
    Diaz MDC, d’Orly F, Granados SG, de Leon-Rodriguez LM, Varenne A (2016) Design, synthesis, and characterization of new cyclic D, L-α-alternate amino acid peptides by capillary electrophoresis coupled to electrospray ionization mass spectrometry. Anal Chem 502:8–15Google Scholar
  136. 136.
    Garcia F, Henion JD (1992) Gel-filled capillary electrophoresis/mass spectrometry using a liquid junction ion spray interface. Anal Chem 64:985–990CrossRefGoogle Scholar
  137. 137.
    Lu W, Yang G, Cole RB (1995) Determination of amino acids by on-line capillary electrophoresis-electrospray ionization mass spectrometry. Electrophoresis 16:487–492PubMedCrossRefGoogle Scholar
  138. 138.
    Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kartick Chandra Majhi
    • 1
  • Paramita Karfa
    • 1
  • Rashmi Madhuri
    • 1
    Email author
  1. 1.Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations