Advertisement

Extracorporeal Cytokine Removal in Septic Shock

  • F. Hawchar
  • N. Öveges
  • Z. MolnárEmail author
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

The incidence of sepsis has increased over the decades and it seems to be the single most important cause of hospitalization, which makes it a serious health economic issue worldwide [1–3]. Despite recent advances in early recognition, adequate resuscitation, organ support, appropriate antibiotic therapy and source control, mortality rates are still around 20–50% depending on the source of the data [4, 5]. One of the more theoretical approaches to improve outcomes is the modulation of the immune system and the host response, which has been in the spotlight of research for decades. Hitherto, anti-inflammatory therapies, such as anti-cytokines, anti-oxidants, etc., have been tested, but the results disappointing [6, 7]. Nevertheless, modulating the “cytokine storm” that occurs in the early phase of septic shock as a result of a dysregulated immune response could provide some benefits by regaining the control between a pro-inflammatory and anti-inflammatory imbalance [8].

References

  1. 1.
    Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311:1308.Google Scholar
  2. 2.
    Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–74.CrossRefGoogle Scholar
  3. 3.
    Torio CM, Andrews RM (2013) National inpatient hospital costs: the most expensive conditions by payer. HCUP Statistical Brief #160. Agency for Healthcare Research and Quality, Rockville, MD. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb160.pdf. Accessed 16 Nov 2018.
  4. 4.
    ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. Process trial. N Engl J Med. 2014;370:1–11.CrossRefGoogle Scholar
  5. 5.
    Thiel P, Schmidt K, Mueller F, Ludewig K, Brunkhorst F, Gensichen J. The Jena Sepsis Registry: a prospective observational registry for patients with severe sepsis or septic shock, supported by primary care. Infection. 2011;39:S138–9.Google Scholar
  6. 6.
    Alejandria M, Lansang M, Dans L, Mantaring JB III. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013:CD001090.Google Scholar
  7. 7.
    Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 2012:CD006616.Google Scholar
  8. 8.
    Lukaszewicz AC, Payen D. Purification methods: a way to treat severe acute inflammation related to sepsis? Crit Care. 2013;17:3–4.CrossRefGoogle Scholar
  9. 9.
    Harder J, Schröder JM, Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol. 2013;22:1–5.CrossRefGoogle Scholar
  10. 10.
    Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012;30:257–62.CrossRefGoogle Scholar
  11. 11.
    Rudraraju R, Jones BG, Surman SL, Sealy RE, Thomas PG, Hurwitz JL. Respiratory tract epithelial cells express retinaldehyde dehydrogenase ALDH1A and enhance IgA production by stimulated B cells in the presence of vitamin A. PLoS One. 2014;9:1–10.CrossRefGoogle Scholar
  12. 12.
    Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract. Immunol Rev. 2014;260:8–20.CrossRefGoogle Scholar
  13. 13.
    Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol. 2014;71:575–88.CrossRefGoogle Scholar
  14. 14.
    Kompoti M, Michopoulos A, Michalia M, Clouva-Molyvdas PM, Germenis AE, Speletas M. Genetic polymorphisms of innate and adaptive immunity as predictors of outcome in critically ill patients. Immunobiology. 2015;220:414–21.CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.CrossRefGoogle Scholar
  16. 16.
    Sompayrac l. How the immune system works. Chichester: Wiley-Blackwell; 2012.Google Scholar
  17. 17.
    Ferrara J, Abhyankar S, Gilliland D. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25:1216–7.PubMedGoogle Scholar
  18. 18.
    Trásy D, Tánczos K, Németh M, et al. Early procalcitonin kinetics and appropriateness of empirical antimicrobial therapy in critically ill patients. A prospective observational study. J Crit Care. 2016;34:50–5.CrossRefGoogle Scholar
  19. 19.
    László I, Trásy D, Molnár Z, Fazakas J. Sepsis: from pathophysiology to individualized patient care. J Immunol Res. 2015;2015:510436.CrossRefGoogle Scholar
  20. 20.
    Nakada T, Oda S, Matsuda K, et al. Continuous hemodiafiltration with PMMA hemofilter in the treatment of patients with septic shock. Mol Med. 2008;14:257–63.Google Scholar
  21. 21.
    Honore PM, Jamez J, Wauthier M, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28:3581–7.CrossRefGoogle Scholar
  22. 22.
    Peng Z, Simon P, Rimmelé T, Clermont G, Kellum JA. Blood purification in sepsis: a new paradigm. Contrib Nephrol. 2010;65:322–8.CrossRefGoogle Scholar
  23. 23.
    Rimmelé T, Kellum JA. Clinical review: blood purification for sepsis. Crit Care. 2011;15:1–10.Google Scholar
  24. 24.
    Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P. High-volume haemofiltration in human septic shock. Crit Care Med. 2001;27:978–86.Google Scholar
  25. 25.
    Joannes-Boyau O, Bagshaw SM, Dewitte A, Spapen HD, Ouattara A. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:1535–46.CrossRefGoogle Scholar
  26. 26.
    Vincent J, Cohen J, Burchardi H, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23:400–5.CrossRefGoogle Scholar
  27. 27.
    Cruz DN, Antonelli M, Fumagalli R, et al. Early use of polymyxin b hemoperfusion in abdominal septic shock. JAMA. 2009;301:2445.CrossRefGoogle Scholar
  28. 28.
    Payen DM, Lukaszewicz AC, Joannes-boyau O, Martin-lefevre L, Kipnis E. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41:975–84.CrossRefGoogle Scholar
  29. 29.
    Coudroy R, Payen D, Launey Y, et al. Modulation by polymyxin-B hemoperfusion of inflammatory response related to severe peritonitis. Shock. 2017;47:93–9.CrossRefGoogle Scholar
  30. 30.
    Dellinger RP, Levy MM, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefGoogle Scholar
  31. 31.
    Cytosorbent Corporation. CytoSorb fields of application. http://cytosorb-therapy.com/the-therapy/fields-of-application. Accessed 18 Nov 2018.
  32. 32.
    Bonavia A, Karamchandani K. Clinical utility of extracorporeal cytokine hemoadsorption therapy : a literature review. Blood Purif. 2018;17033:337–49.CrossRefGoogle Scholar
  33. 33.
    Taniguchi T. Cytokine adsorbing columns. Contrib Nephrol. 2010;166:134–41.CrossRefGoogle Scholar
  34. 34.
    Kogelmann K, Jarczak D, Scheller M, Drüner M. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care. 2017;21:1–10.CrossRefGoogle Scholar
  35. 35.
    Ronco C, Brendolan A, Dan M, et al. Adsorption in sepsis. Kidney Int. 2000;58:148–55.CrossRefGoogle Scholar
  36. 36.
    Peng ZY, Wang HZ, Carter MJ, et al. Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis. Kidney Int. 2012;81:363–9.CrossRefGoogle Scholar
  37. 37.
    Kellum J, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. 2007;167:1655–63.CrossRefGoogle Scholar
  38. 38.
    Frimmel S, Schipper J, Henschel J, Tsui TY, Mitzner SR, Koball S. First description of single-pass albumin dialysis combined with cytokine adsorption in fulminant liver failure and hemophagocytic syndrome resulting from generalized herpes simplex virus 1 infection. Liver Transpl. 2014;20:1523–4.PubMedGoogle Scholar
  39. 39.
    Hetz H, Berger R, Recknagel P, Steltzer H. Septic shock secondary to β-hemolytic streptococcus-induced necrotizing fasciitis treated with a novel cytokine adsorption therapy. Int J Artif Organs. 2014;37:422–6.CrossRefGoogle Scholar
  40. 40.
    Basu R, Pathak S, Goyal J, Chaudhry R, Goel RB, Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18:822–4.CrossRefGoogle Scholar
  41. 41.
    Wiegele M, Krenn CG. Cytosorb™ in a patient with legionella pneumonia—associated rhabdomyolysis: a case report. ASAIO J. 2015;61:18–20.CrossRefGoogle Scholar
  42. 42.
    Wilhelm MJ, Pratschke J, Beato F, et al. Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation. 2000;102:2426–33.CrossRefGoogle Scholar
  43. 43.
    Kellum JA, Venkataraman R, Powner D, Elder M, Hergenroeder G, Carter M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med. 2008;36:268–72.CrossRefGoogle Scholar
  44. 44.
    Schädler D, Pausch C, Heise D, et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: a randomized controlled trial. PLoS One. 2017;12:1–19.CrossRefGoogle Scholar
  45. 45.
    Öveges N, Hawchar F, László I, et al. Early cytokine adsorption in septic shock (ACESS-trial): results of a proof concept, pilot study. Crit Care. 2018;22(Suppl 1):P113. (abst)Google Scholar
  46. 46.
    Friesecke S, Träger K, Schittek GA, et al. International registry on the use of the CytoSorb® adsorber in ICU patients: study protocol and preliminary results. Medi Klin Intensivmed Notfallmed. 2017; Sep 4.  https://doi.org/10.1007/s00063-017-0342-5. [Epub ahead of print]
  47. 47.
    Becze Z, Molnár Z, Fazakas J. Can procalcitonin levels indicate the need for adjunctive therapies in sepsis ? Int J Antimicrob Agents. 2015;46:S13–8.CrossRefGoogle Scholar
  48. 48.
    Trásy D, Molnár Z. Procalcitonin—assisted antibiotic strategy in sepsis. EJIFCC. 2017;28:104–13.PubMedPubMedCentralGoogle Scholar
  49. 49.
    David S, Thamm K, Schmidt BMW, Falk CS, Kielstein JT. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J Intensive Care. 2017;5:1–5.CrossRefGoogle Scholar
  50. 50.
    Morris C, Gray L, Giovannelli M. Early report: the use of Cytosorb TM haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations. J Intensive Care Soc. 2015;16:257–64.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive CareUniversity of SzegedSzegedHungary

Personalised recommendations