Advertisement

Antimicrobial Stewardship in Sepsis

  • E. Plata-Menchaca
  • E. Esteban
  • R. FerrerEmail author
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

Sepsis is a leading cause of death and life-threatening condition, affecting more than 19 million people each year, in which chances of survival mainly depend upon the effective accomplishment of timely, accurate, rational and protocolized treatment interventions [1, 2]. Current initiatives aimed to improve sepsis awareness and early treatment are intended to halt the catastrophic consequences of systemic errors occurring even within some experienced medical institutions where training programs promoting early sepsis diagnosis and management protocols are being encouraged [3].

References

  1. 1.
    Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD. Critical care and the global burden of critical illness in adults. Lancet. 2010;376:1339–46.CrossRefGoogle Scholar
  2. 2.
    Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefGoogle Scholar
  3. 3.
    Staunton O, Staunton C. The urgency of now: attacking the sepsis crisis. Crit Care Med. 2018;46:809–10.CrossRefGoogle Scholar
  4. 4.
    Coz Yataco A, Jaehne AK, Rivers EP. Protocolized early sepsis care is not only helpful for patients: it prevents medical errors. Crit Care Med. 2017;45:464–72.CrossRefGoogle Scholar
  5. 5.
    Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–55.CrossRefGoogle Scholar
  6. 6.
    Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018;44:925–9283.CrossRefGoogle Scholar
  7. 7.
    Vincent JL, Pereira AJ, Gleeson J, De Backer D. Early management of sepsis. Clin Exp Emerg Med. 2014;1:3.CrossRefGoogle Scholar
  8. 8.
    Prescott HC, Cope TM, Gesten FC. Reporting of sepsis cases for performance measurement versus for reimbursement in New York State. Crit Care Med. 2018;46:666–73.CrossRefGoogle Scholar
  9. 9.
    Seymour CW, Kahn JM, Martin-Gill C, et al. Delays from first medical contact to antibiotic administration for sepsis. Crit Care Med. 2017;45:759–65.CrossRefGoogle Scholar
  10. 10.
    Laupland KB, Ferrer R. Is it time to implement door-to-needle time for “infection attacks”? Intensive Care Med. 2017;43:1712–3.CrossRefGoogle Scholar
  11. 11.
    O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. 2014. Available at: https://amr-review.org/sites/default/files/AMR Review Paper.pdf. Accessed 13 Nov 2018.
  12. 12.
    World Health Organization. Antimicrobial resistance global report on surveillance. 2014. Available at http://www.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf. Accessed 13 Nov 2018.
  13. 13.
    Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(Suppl 2):S82–9.CrossRefGoogle Scholar
  14. 14.
    Gerding DN. The search for good antimicrobial stewardship. Jt Comm J Qual Improv. 2001;27:403–4.PubMedGoogle Scholar
  15. 15.
    Joseph J, Rodvold KA. The role of carbapenems in the treatment of severe nosocomial respiratory tract infections. Expert Opin Pharmacother. 2008;9:561–75.CrossRefGoogle Scholar
  16. 16.
    Niederman MS, Soulountsi V. De-escalation therapy: is it valuable for the management of ventilator-associated pneumonia? Clin Chest Med. 2011;32:517–34.CrossRefGoogle Scholar
  17. 17.
    Kollef MH. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis. 2008;47:S3–S13.CrossRefGoogle Scholar
  18. 18.
    Mokart D, Slehofer G, Lambert J, et al. De-escalation of antimicrobial therapy in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med. 2014;40:41–9.CrossRefGoogle Scholar
  19. 19.
    Esteban E, Belda S, García-Soler P, et al. A multifaceted educational intervention shortened time to antibiotic administration in children with severe sepsis and septic shock: ABISS Edusepsis pediatric study. Intensive Care Med. 2017;43:1916–8.CrossRefGoogle Scholar
  20. 20.
    Ferrer R, Martínez ML, Gomà G, et al. Improved empirical antibiotic treatment of sepsis after an educational intervention: the ABISS-Edusepsis study. Crit Care. 2018;22:167.CrossRefGoogle Scholar
  21. 21.
    Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin Infect Dis. 2014;59:S97–S100.CrossRefGoogle Scholar
  22. 22.
    Zhang WZ, Singh S. Antibiotic stewardship programmes in intensive care units: why, how and where are they leading us. World J Crit Care Med. 2015;4:13–28.CrossRefGoogle Scholar
  23. 23.
    Zilahi G, McMahon MA, Povoa P, Martin-Loeches I. Duration of antibiotic in the intensive care unit. J Thorac Dis. 2016;8:3774–80.CrossRefGoogle Scholar
  24. 24.
    Pugh R, Grant C, Cooke RP, Dempsey G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumoniae in critically ill adults. Cochrane Database Syst Rev. 2015;2015:CD007577.Google Scholar
  25. 25.
    Chotiprasitsakul D, Jan JH, Cosgrove SE, et al. Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter propensity score-matched cohort. Clin Infect Dis. 2018;66:172–7.CrossRefGoogle Scholar
  26. 26.
    Cabellos C, Pelegrin I, Benavent E, et al. Invasive meningococcal disease: Impact of a short course therapy. A DOOR/RADAR study. J Infect. 2017;75:420–3.CrossRefGoogle Scholar
  27. 27.
    Martínez ML, Ferrer R, Torrents E, et al. Impact of source control in patients with severe sepsis and septic shock. Crit Care Med. 2017;45:11–9.CrossRefGoogle Scholar
  28. 28.
    Ulldemolins M, Vaquer S, Llaurado-Serra M, et al. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care. 2014;18:227.CrossRefGoogle Scholar
  29. 29.
    World Health Organization. Global antimicrobial resistance surveillance system: manual for early implementation. 2015. Available at: http://www.who.int/antimicrobial-resistance/publications/surveillance-system-manual/en/. Accessed 13 Nov 2018.
  30. 30.
    Morgan DJ, Malani P, Diekema DJ. Diagnostic stewardship-leveraging the laboratory to improve antimicrobial use. JAMA. 2017;318:607–8.CrossRefGoogle Scholar
  31. 31.
    Vincent JL, Rello J, Marshall J, et al. International study of prevalence and outcomes of infections in intensive care units. JAMA. 2009;302:2323–9.CrossRefGoogle Scholar
  32. 32.
    Zaragoza R, Artero A, Camarena JJ, Sancho S, González R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment in patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect. 2003;9:412–8.CrossRefGoogle Scholar
  33. 33.
    Beganovic M, Costello M, Wieczorkiewicz SM. Effect of Matrix-assisted laser desorption ionization-time of flight Mass spectrometry (MALDI-TOF MS) alone versus MALDI-TOF MS combined with real-time antimicrobial stewardship interventions on time to optimal antimicrobial therapy in patients with positive blood cultures. J Clin Microbiol. 2017;55:1437–45.CrossRefGoogle Scholar
  34. 34.
    Frye AM, Baker CA, Rustvold DL, et al. Clinical impact of a real-time PCR-assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol. 2012;50:127–33.CrossRefGoogle Scholar
  35. 35.
    Bouadma L, Luyt CE, Tubach F, et al. Use of procalcitonin to reduce patient’s exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.CrossRefGoogle Scholar
  36. 36.
    de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled open-label trial. Lancet Infect Dis. 2016;16:819–27.CrossRefGoogle Scholar
  37. 37.
    Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level metaanalysis. Lancet Infect Dis. 2018;18:95–107.CrossRefGoogle Scholar
  38. 38.
    Huang DT, Yealy DM, Filbin MR. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med. 2018;379:236–49.CrossRefGoogle Scholar
  39. 39.
    Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med. 2017;15:1–11.CrossRefGoogle Scholar
  40. 40.
    Jung B, Molinari N, Nasri M, et al. Procalcitonin biomarker kinetics fails to predict treatment response in perioperative abdominal infections with septic shock. Crit Care. 2013;17:R255.CrossRefGoogle Scholar
  41. 41.
    Garcia IJ, Gargallo MB, Torné EE, et al. Procalcitonin: a useful biomarker to discriminate infection after cardiopulmonary bypass in children. Pediatr Crit Care Med. 2012;13:441–5.CrossRefGoogle Scholar
  42. 42.
    Oliveira CF, Botoni FA, Oliveira CR, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41:2336–43.CrossRefGoogle Scholar
  43. 43.
    Doron S, Davidson LE. Antimicrobial stewardship. Mayo Clin Proc. 2011;86:1113–23.CrossRefGoogle Scholar
  44. 44.
    Molina J, Peñalva G, Gil-Navarro MV, et al. Long-term impact of an educational antimicrobial stewardship program on hospital acquired candidemia and multidrug-resistant bloodstream infections: a quasi-experimental study of interrupted time-series analysis. Clin Infect Dis. 2017;65:1992–9.CrossRefGoogle Scholar
  45. 45.
    Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34:634–40.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research DepartmentInstitut de Investigació Biomèdica de Bellvitge, L’Hospitalet de LlobregatBarcelonaSpain
  2. 2.Pediatric Intensive Care UnitHospital Sant Joan de DéuBarcelonaSpain
  3. 3.Intensive Care DepartmentHospital Universitario Vall d’HebronBarcelonaSpain
  4. 4.Shock, Organ Dysfunction and Resuscitation Research GroupVall d’Hebron Research InstituteBarcelonaSpain

Personalised recommendations