Advertisement

Multidrug Resistant Gram-Negative Bacteria in Community-Acquired Pneumonia

  • C. Cillóniz
  • C. Dominedò
  • A. TorresEmail author
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

Community-acquired pneumonia (CAP) is associated with high morbidity and mortality worldwide [1]. Although several different bacteria and respiratory viruses can be responsible for CAP, Streptococcus pneumoniae (pneumococcus) remains the most common causative pathogen. A small proportion of CAP cases are caused by Gram-negative bacteria, especially Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Stenotrophomona maltophilia [2, 3]. The main problem concerning the treatment of Gram-negative bacterial infections is their related antibiotic resistance, reported as multidrug resistant (MDR = resistant to at least one agent in three or more groups of antibiotics), extensively drug resistant (XDR = resistant to at least one agent in all but two or fewer groups of antibiotics) and pan-drug resistant (PDR = resistant to all groups of antibiotics) [4]. This makes the clinical management of pneumonia caused by such pathogens a challenge for physicians. Taking into account the clinical severity that may be associated with CAP caused by Gram-negative bacteria (respiratory failure, bacteremia, shock, acute respiratory distress syndrome [ARDS]) the magnitude of the global health problem is tremendous.

Notes

Acknowledgement

Dr Cillóniz is the recipient of a Postdoctoral Grant (Strategic plan for research and innovation in health-PERIS 2016-2020).

References

  1. 1.
    Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):S27–72.CrossRefGoogle Scholar
  2. 2.
    Aliberti S, Cilloniz C, Chalmers JD, et al. Multidrug-resistant pathogens in hospitalised patients coming from the community with pneumonia: a European perspective. Thorax. 2013;68:997–9.CrossRefGoogle Scholar
  3. 3.
    Cillóniz C, Ewig S, Polverino E, et al. Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax. 2011;66:340–6.CrossRefGoogle Scholar
  4. 4.
    Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRefGoogle Scholar
  5. 5.
    Versporten A, Zarb P, Caniaux I, et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health. 2018;6:e619–29.CrossRefGoogle Scholar
  6. 6.
    European Antimicrobial Resistance Surveillance Network. Surveillance of antimicrobial resistance in Europe 2016. 2016. Available at: https://ecdc.europa.eu/sites/portal/files/documents/AMR-surveillance-Europe-2016.pdf. Accessed 19 Nov 2018.
  7. 7.
    Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67:159–73.CrossRefGoogle Scholar
  8. 8.
    Crousilles A, Maunders E, Bartlett S, et al. Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol. 2015;10:1825–36.CrossRefGoogle Scholar
  9. 9.
    von Baum H, Welte T, Marre R, et al. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: diagnosis, incidence and predictors. Eur Respir J. 2010;35:598–605.CrossRefGoogle Scholar
  10. 10.
    Restrepo MI, Babu BL, Reyes LF, et al. Burden and risk factors for pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J. 2018;52:1709910.Google Scholar
  11. 11.
    Cillóniz C, Gabarrús A, Ferrer M, et al. Community-acquired pneumonia due to multidrug and non-multidrug resistant Pseudomonas aeruginosa. Chest. 2016;150:415–25.CrossRefGoogle Scholar
  12. 12.
    Ferrer M, Travierso C, Cilloniz C, et al. Severe community-acquired pneumonia: characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS One. 2018;13:e0191721.CrossRefGoogle Scholar
  13. 13.
    Lim WS, Baudouin SV, George RC, et al. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009;64(Suppl 3):iii1–55.CrossRefGoogle Scholar
  14. 14.
    Al-Jaghbeer MJ, Justo JA, Owens W, et al. Risk factors for pneumonia due to beta-lactam-susceptible and beta-lactam-resistant Pseudomonas aeruginosa: a case-case-control study. Infection. 2018. May 11,  https://doi.org/10.1007/s15010-018-1147-z [Epub ahead of print]
  15. 15.
    John TJ, Lalla U, Taljaard JJ, et al. An outbreak of community-acquired pseudomonas aeruginosa pneumonia in a setting of high water stress. QJM. 2017;110:855–856.Google Scholar
  16. 16.
    Cillóniz C, Civljak R, Nicolini A, Torres A. Polymicrobial community-acquired pneumonia: an emerging entity. Respirology. 2016;21:65–75.CrossRefGoogle Scholar
  17. 17.
    WHO. High levels of antibiotic resistance found worldwide, new data shows. 2018. Available at: WHO. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/. Accessed 25 Jun 2018.
  18. 18.
    Eveillard M, Kempf M, Belmonte O, et al. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int J Infect Dis. 2013;17:e802–5.CrossRefGoogle Scholar
  19. 19.
    Wong D, Nielsen TB, Bonomo RA, et al. Clinical and pathophysiological overview of acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30:409–47.PubMedGoogle Scholar
  20. 20.
    Dexter C, Murray GL, Paulsen IT, Peleg AY. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti-Infect Ther. 2015;13:567–73.CrossRefGoogle Scholar
  21. 21.
    Mody L, Foxman B, Bradley S, et al. Longitudinal assessment of multidrug-resistant organisms in newly admitted nursing facility patients: implications for an evolving population. Clin Infect Dis. 2018;67:837–44.CrossRefGoogle Scholar
  22. 22.
    Peng C, Zong Z, Fan H. Acinetobacter baumannii isolates associated with community-acquired pneumonia in West China. Clin Microbiol Infect. 2012;18:E491–3.CrossRefGoogle Scholar
  23. 23.
    Son YW, Jung IY, Ahn MY, et al. A case of community-acquired pneumonia caused by multidrug-resistant Acinetobacter baumannii in Korea. Infect Chemother. 2017;49:297–300.CrossRefGoogle Scholar
  24. 24.
    Ong CWM, Lye DCB, Khoo KL, et al. Severe community-acquired Acinetobacter baumannii pneumonia: an emerging highly lethal infectious disease in the Asia-Pacific. Respirology. 2009;14:1200–5.CrossRefGoogle Scholar
  25. 25.
    Kim YA, Kim JJ, Won DJ, Lee K. Seasonal and temperature-associated increase in community-onset Acinetobacter baumannii complex colonization or infection. Ann Lab Med. 2018;38:266–70.CrossRefGoogle Scholar
  26. 26.
    Serota DP, Sexton ME, Kraft CS, Palacio F. Severe community-acquired pneumonia due to Acinetobacter baumannii in North America: case report and review of the literature. Open Forum Infect Dis. 2018;5:ofy044.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Eugenin EA. Community-acquired pneumonia infections by Acinetobacter baumannii: how does alcohol impact the antimicrobial functions of macrophages? Virulence. 2013;4:435–6.CrossRefGoogle Scholar
  28. 28.
    Kamoshida G, Kikuchi-Ueda T, Nishida S, et al. Pathogenic bacterium Acinetobacter baumannii Inhibits the formation of neutrophil extracellular traps by suppressing neutrophil adhesion. Front Immunol. 2018;9:178.CrossRefGoogle Scholar
  29. 29.
    Anstey NM, Currie BJ, Hassell M, Palmer D, Dwyer B, Seifert H. Community-acquired bacteremic Acinetobacter pneumonia in tropical Australia is caused by diverse strains of Acinetobacter baumannii, with carriage in the throat in at-risk groups. J Clin Microbiol. 2002;40:685–6.CrossRefGoogle Scholar
  30. 30.
    Peleg AY, Weerarathna T, McCarthy JS, Davis TME. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev. 2007;23:3–13.CrossRefGoogle Scholar
  31. 31.
    Lee CR, Lee JH, Park KS, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483.CrossRefGoogle Scholar
  32. 32.
    Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18:37–46.CrossRefGoogle Scholar
  33. 33.
    Cano V, March C, Insua JL, et al. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol. 2015;17:1537–60.CrossRefGoogle Scholar
  34. 34.
    Rafat C, Messika J, Barnaud G, et al. Hypervirulent Klebsiella pneumoniae, a 5-year study in a French ICU. J Med Microbiol. 2018;67:1083–9.CrossRefGoogle Scholar
  35. 35.
    Rammaert B, Goyet S, Beauté J, et al. Klebsiella pneumoniae related community-acquired acute lower respiratory infections in Cambodia: clinical characteristics and treatment. BMC Infect Dis. 2012;12:3.CrossRefGoogle Scholar
  36. 36.
    Ishida T, Ito A, Washio Y, et al. Risk factors for drug-resistant pathogens in immunocompetent patients with pneumonia: evaluation of PES pathogens. J Infect Chemother. 2017;23:23–8.CrossRefGoogle Scholar
  37. 37.
    Lin YT, Jeng YY, Chen TL, Fung C-P. Bacteremic community-acquired pneumonia due to Klebsiella pneumoniae: clinical and microbiological characteristics in Taiwan, 2001-2008. BMC Infect Dis. 2010;10:307.CrossRefGoogle Scholar
  38. 38.
    Tseng C-P, Wu H-S, Wu T-H, et al. Clinical characteristics and outcome of patients with community-onset Klebsiella pneumoniae bacteremia requiring intensive care. J Microbiol Immunol Infect. 2013;46:217–23.CrossRefGoogle Scholar
  39. 39.
    Decré D, Verdet C, Emirian A, et al. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol. 2011;49:3012–4.CrossRefGoogle Scholar
  40. 40.
    Inghammar M, Borand L, Goyet S, et al. Community-acquired pneumonia and Gram-negative bacilli in Cambodia-incidence, risk factors and clinical characteristics. Trans R Soc Trop Med Hyg. 2018;112:57–63.CrossRefGoogle Scholar
  41. 41.
    Baker TM, Satlin MJ. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk Lymphoma. 2016;57:2245–58.CrossRefGoogle Scholar
  42. 42.
    Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25:2–41.CrossRefGoogle Scholar
  43. 43.
    Cha YK, Kim JS, Park SY, et al. Computed tomography findings of community-acquired Stenotrophomonas maltophilia pneumonia in an immunocompetent patient: a case report. Korean J Radiol. 2016;17:961–4.CrossRefGoogle Scholar
  44. 44.
    Geller M, Nunes CP, Oliveira L, Nigri R. S. maltophilia pneumonia: a case report. Respir Med Case Rep. 2018;24:44–5.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Mori M, Tsunemine H, Imada K, et al. Life-threatening hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in the treatment of hematologic diseases. Ann Hematol. 2014;93:901–11.CrossRefGoogle Scholar
  46. 46.
    Falagas ME, Kastoris AC, Vouloumanou EK, Dimopoulos G. Community-acquired Stenotrophomonas maltophilia infections: a systematic review. Eur J Clin Microbiol Infect Dis. 2009;28:719–30.CrossRefGoogle Scholar
  47. 47.
    Torres A, Lee N, Cilloniz C, et al. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J. 2016;48:1764–78.CrossRefGoogle Scholar
  48. 48.
    Sibila O, Rodrigo-Troyano A, Shindo Y, et al. Multidrug-resistant pathogens in patients with pneumonia coming from the community. Curr Opin Pulm Med. 2016;22:219–26.CrossRefGoogle Scholar
  49. 49.
    Gross AE, Van Schooneveld TC, Olsen KM, et al. Epidemiology and predictors of multidrug-resistant community-acquired and health care-associated pneumonia. Antimicrob Agents Chemother. 2014;58:5262–8.CrossRefGoogle Scholar
  50. 50.
    Prina E, Ranzani OT, Polverino E, et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc. 2015;12:153–60.CrossRefGoogle Scholar
  51. 51.
    Shindo Y, Ito R, Kobayashi D, et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2013;188:985–95.CrossRefGoogle Scholar
  52. 52.
    Cao B, Huang Y, She DY, et al. Diagnosis and treatment of community-acquired pneumonia in adults: 2016 clinical practice guidelines by the Chinese Thoracic Society, Chinese Medical Association. Clin Respir J. 2018;12:1320–60.CrossRefGoogle Scholar
  53. 53.
    National Health and Medical Research Council. Therapeutic guidelines antibiotic version 15. In: Australian Clinical Practice Guidelines. Canberra: National Health and Medical Research Council; 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PneumologyHospital Clinic of BarcelonaBarcelonaSpain
  2. 2.August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
  3. 3.University of BarcelonaBarcelonaSpain
  4. 4.Biomedical Research Networking Centres in Respiratory Diseases (CIBERES)BarcelonaSpain
  5. 5.Department of Anesthesiology and Intensive Care MedicineFondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro CuoreRomeItaly

Personalised recommendations