Advertisement

Brain Ultrasound in the Non-neurocritical Care Setting

  • C. Robba
  • L. Ball
  • P. PelosiEmail author
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

The clinical applications of ultrasound in intensive care and perioperative medicine have expanded enormously over the past decades. In particular, brain ultrasonography and transcranial Doppler (TCD) can help with early detection of neurological emergencies and provide real-time information on the cerebral hemodynamics of critically ill patients. Ultrasound enables assessment of brain structures and detection of anatomy, as well as calculation of basic and TCD-derived parameters. Among these, non-invasive assessment of intracranial pressure (ICP), cerebral perfusion pressure (CPP) and autoregulation mechanisms have gained particular interest and can have useful clinical applications also outside the specialized neurocritical care unit.

References

  1. 1.
    Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res. 2018;96:720–30.CrossRefGoogle Scholar
  2. 2.
    De Riva N, Budohoski KP, Smielewski P, et al. Transcranial doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.CrossRefGoogle Scholar
  3. 3.
    Robba C, Donnelly J, Bertuetti R, et al. Doppler non-invasive monitoring of ICP in an animal model of acute intracranial hypertension. Neurocrit Care. 2015;23:419–26.CrossRefGoogle Scholar
  4. 4.
    Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC. Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry. 2001;70:198–204.CrossRefGoogle Scholar
  5. 5.
    Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21:44.CrossRefGoogle Scholar
  6. 6.
    Robba C, Santori G, Czosnyka M, et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2018;44:1284–94.CrossRefGoogle Scholar
  7. 7.
    Robba C, Cardim D, Tajsic T, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med. 2017;14:e1002356.CrossRefGoogle Scholar
  8. 8.
    Geeraerts T, Launey Y, Martin L, Pottecher J, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33:1704–11.CrossRefGoogle Scholar
  9. 9.
    Thumburu KK, Taneja S, Vasishta RK, Dhiman RK. Neuropathology of acute liver failure. Neurochem Int. 2012;60:672–5.CrossRefGoogle Scholar
  10. 10.
    Vaquero J, Fontana RJ, Larson AM, et al. Complications and use of intracranial pressure monitoring in patients with acute liver failure and severe encephalopathy. Liver Transpl. 2005;11:1581–9.CrossRefGoogle Scholar
  11. 11.
    Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG. Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care. 2018;8:1–11.Google Scholar
  12. 12.
    Seo H, Kim YK, Shin WJ, Hwang GS. Ultrasonographic optic nerve sheath diameter is correlated with arterial carbon dioxide concentration during reperfusion in liver transplant recipients. Transplant Proc. 2013;45:2272–6.CrossRefGoogle Scholar
  13. 13.
    Zheng Y, Villamayor AJ, Merritt W, et al. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation. Neurocrit Care. 2012;17:77–84.CrossRefGoogle Scholar
  14. 14.
    Stewart J, Särkelä M, Koivusalo AM, et al. Frontal electroencephalogram variables are associated with the outcome and stage of hepatic encephalopathy in acute liver failure. Liver Transpl. 2014;20:1256–65.CrossRefGoogle Scholar
  15. 15.
    Abdo A, Pérez-Bernal J, Hinojosa R, et al. Cerebral hemodynamics patterns by transcranial Doppler in patients with acute liver failure. Transplant Proc. 2015;47:2647–9.CrossRefGoogle Scholar
  16. 16.
    Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol. 2015;81:776–88.PubMedGoogle Scholar
  17. 17.
    Pierrakos C, Antoine A, Velissaris D, et al. Transcranial doppler assessment of cerebral perfusion in critically ill septic patients: a pilot study. Ann Intensive Care. 2013;3:28.CrossRefGoogle Scholar
  18. 18.
    Pfister D, Siegemund M, Dell-Kuster S, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63.CrossRefGoogle Scholar
  19. 19.
    Ueda T, Ishida E, Kojima Y, Yoshikawa S, Yonemoto H. Sonographic optic nerve sheath diameter: a simple and rapid tool to assess the neurologic prognosis after cardiac arrest. J Neuroimaging. 2015;25:927–30.CrossRefGoogle Scholar
  20. 20.
    Ertl M, Weber S, Hammel G, Schroeder C, Krogias C. Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging. 2018;28:542–8.CrossRefGoogle Scholar
  21. 21.
    Chelly J, Deye N, Guichard JP, et al. The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation. 2016;103:7–13.CrossRefGoogle Scholar
  22. 22.
    Grubb BP, Durzinsky D, Brewster P, Gbur C, Collins B. Sudden cerebral vasoconstriction during induced polymorphic ventricular tachycardia and fibrillation: further observations of a paradoxic response. Pacing Clin Electrophysiol. 1997;20:667–72.Google Scholar
  23. 23.
    Heimburger D, Durand M, Gaide-Chevronnay L, et al. Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation. 2016;103:88–93.CrossRefGoogle Scholar
  24. 24.
    Marinoni M, Migliaccio ML, Trapani S, et al. Cerebral microemboli detected by transcranial doppler in patients treated with extracorporeal membrane oxygenation. Acta Anaesthesiol Scand. 2016;60:934–44.CrossRefGoogle Scholar
  25. 25.
    Kavi T, Esch M, Rinsky B, Rosengart A, Lahiri S, Lyden PD. Transcranial Doppler changes in patients treated with extracorporeal membrane oxygenation. J Stroke Cerebrovasc Dis. 2016;25:2882–5.CrossRefGoogle Scholar
  26. 26.
    Taylor GA, Fitz CR, Miller MK, Garin DB, Catena LM, Short BL. Intracranial abnormalities in infants treated with extracorporeal membrane oxygenation: imaging with US and CT. Radiology. 1987;165:675–8.CrossRefGoogle Scholar
  27. 27.
    Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.CrossRefGoogle Scholar
  28. 28.
    Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.CrossRefGoogle Scholar
  29. 29.
    Shapiro HM, Marshall LF. Intracranial pressure responses to PEEP in head-injured patients. J Trauma. 1978;18:254–6.CrossRefGoogle Scholar
  30. 30.
    Robba C, Bragazzi L, Bertuccio A, et al. Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: a pilot study. J Neurosurg Anesthesiol. 2017;29:243–50.CrossRefGoogle Scholar
  31. 31.
    Lindqvist PG, Maršál K, Pirhonen JP. Maternal cerebral Doppler velocimetry before, during, and after a normal pregnancy: a longitudinal study. Acta Obstet Gynecol Scand. 2006;85:1299–303.CrossRefGoogle Scholar
  32. 32.
    Janzarik WG, Ehlers E, Ehmann R, et al. Dynamic cerebral autoregulation in pregnancy and the risk of preeclampsia. Hypertension. 2014;63:161–6.CrossRefGoogle Scholar
  33. 33.
    Dubost C, Le Gouez A, Jouffroy V, et al. Optic nerve sheath diameter used as ultrasonographic assessment of the incidence of raised intracranial pressure in preeclampsia: a pilot study. Anesthesiology. 2012;116:1066–71.CrossRefGoogle Scholar
  34. 34.
    Van Veen TR, Panerai RB, Haeri S, Griffioen AC, Zeeman GG, Belfort MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122:1064–9.CrossRefGoogle Scholar
  35. 35.
    Kargiotis O, Safouris A, Magoufis G, Stamboulis E, Tsivgoulis G. Transcranial color-coded duplex in acute encephalitis: current status and future prospects. J Neuroimaging. 2016;26:377–82.CrossRefGoogle Scholar
  36. 36.
    Sheehan JR, Liu X, Donnelly J, Cardim D, Czosnyka M, Robba C. Clinical application of non-invasive intracranial pressure measurements. Br J Anaesth. 2018;121:500–1.CrossRefGoogle Scholar
  37. 37.
    Mäurer M, Shambal S, Berg D, et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke. 1998;29:2563–7.CrossRefGoogle Scholar
  38. 38.
    Albert AF, Kirkman MA. Clinical and radiological predictors of malignant middle cerebral artery infarction development and outcomes. J Stroke Cerebrovasc Dis. 2017;26:2671–9.CrossRefGoogle Scholar
  39. 39.
    Školoudík D, Herzig R, Fadrná T, et al. Distal enlargement of the optic nerve sheath in the hyperacute stage of intracerebral haemorrhage. Br J Ophthalmol. 2011;5:217–21.CrossRefGoogle Scholar
  40. 40.
    Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49:508–14.CrossRefGoogle Scholar
  41. 41.
    Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10:376–81.CrossRefGoogle Scholar
  42. 42.
    Yüzbaşioğlu Y, Yüzbaşioğlu S, Coşkun S, et al. Bedside measurement of the optic nerve sheath diameter with ultrasound in cerebrovascular disorders. Turk J Med Sci. 2018;48:93–9.CrossRefGoogle Scholar
  43. 43.
    Amini A, Kariman H, Arhami Dolatabadi A, et al. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med. 2013;31:236–9.CrossRefGoogle Scholar
  44. 44.
    Major R, Girling S, Boyle A. Ultrasound measurement of optic nerve sheath diameter in patients with a clinical suspicion of raised intracranial pressure. Emerg Med J. 2011;28:679–81.CrossRefGoogle Scholar
  45. 45.
    Bouzat P, Almeras L, Manhes P, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125:346–54.CrossRefGoogle Scholar
  46. 46.
    Komut E, Kozacı N, Sönmez BM, et al. Bedside sonographic measurement of optic nerve sheath diameter as a predictor of intracranial pressure in ED. Am J Emerg Med. 2016;34:963–7.CrossRefGoogle Scholar
  47. 47.
    Smith B, Vu E, Kibler K, et al. Does hypothermia impair cerebrovascular autoregulation in neonates during cardiopulmonary bypass? Paediatr Anaesth. 2017;27:905–10.CrossRefGoogle Scholar
  48. 48.
    Robba C, Cardim D, Donnelly J, et al. Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. Br J Anaesth. 2016;117:783–91.CrossRefGoogle Scholar
  49. 49.
    Buhre W, Weyland A, Buhre K, et al. Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures. Br J Anaesth. 2000;84:354–7.CrossRefGoogle Scholar
  50. 50.
    Pohl A, Cullen DJ. Cerebral ischemia during shoulder surgery in the upright position: a case series. J Clin Anesth. 2005;17:463–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Anaesthesia and Intensive CareSan Martino Policlinico Hospital, IRCCS for OncologyGenoaItaly
  2. 2.Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly

Personalised recommendations