Advertisement

The Effects of Disease and Treatments on Ventriculo-Arterial Coupling: Implications for Long-term Care

  • F. GuarracinoEmail author
  • P. Bertini
  • M. R. Pinsky
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

Left ventricular (LV) function can be described by its pressure-volume trajectory during one cardiac cycle, with volume on the x-axis (Fig. 12.1). This LV pressure-volume representation is extremely informative of most of the determinants of LV function, describing the four phases of the cardiac cycle: diastolic filling, isovolumic contraction, ejection and isovolumic relaxation. Each pressure-volume loop defines the systolic and diastolic limits of LV pressure and volume independent of preload or afterload. LV pressure-volume points cannot exist outside the limits of diastolic compliance and the end-systolic elastance, defined as the LV end-systolic pressure-volume relationship (ESPVR), which is mostly linear over the physiologic range with a negative slope and a positive zero pressure volume intercept. The ESPVR defines the maximal LV systolic stiffness and is thus also called end-systolic elastance (Ees). At the other extreme, the end-diastolic pressure-volume relationship (EDPVR), reflecting global LV diastolic compliance is slightly curvilinear becoming steeper (stiffer) as LV volumes become large. Important to this discussion, the LV ESPVR reflects global LV systolic function, with increasing and decreasing Ees reflecting increasing and decreasing LV contractility, respectively; whereas EDPVR represents LV diastolic properties.

References

  1. 1.
    Kelly RP, Ting CT, Yang TM, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86:513–21.CrossRefGoogle Scholar
  2. 2.
    Marchionni N, Fumagalli S, Baldereschi G, Di Bari M, Fantini F. Effective arterial elastance and the hemodynamic effects of intraaortic balloon counterpulsation in patients with coronary heart disease. Am Heart J. 1998;135:855–61.CrossRefGoogle Scholar
  3. 3.
    Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285:H614–20.CrossRefGoogle Scholar
  4. 4.
    Chen CH, Fetics B, Nevo E, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38:2028–34.CrossRefGoogle Scholar
  5. 5.
    Guarracino F, Ferro B, Baldassarri R, et al. Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure. Cardiovasc Ultrasound. 2013;11:13.CrossRefGoogle Scholar
  6. 6.
    Ky B, French B, May Khan A, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol. 2013;62:1165–72.CrossRefGoogle Scholar
  7. 7.
    Chirinos JA. Ventricular-arterial coupling: Invasive and non-invasive assessment. Artery Res. 2013;7:2–14.Google Scholar
  8. 8.
    Herberg U, Gatzweiler E, Breuer T, Breuer J. Ventricular pressure-volume loops obtained by 3D real-time echocardiography and mini pressure wire-a feasibility study. Clin Res Cardiol. 2013;102:427–38.CrossRefGoogle Scholar
  9. 9.
    Herberg U, Linden K, Dewald O, et al. 3D real-time echocardiography combined with mini pressure wire generate reliable pressure-volume loops in small hearts. PLoS One. 2016;11:e0165397.CrossRefGoogle Scholar
  10. 10.
    Nakamoto T, Cheng CP, Santamore WP, Iizuka M. Estimation of left ventricular elastance without altering preload or afterload in the conscious dog. Cardiovasc Res. 1993;27:868–73.CrossRefGoogle Scholar
  11. 11.
    Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56:808–15.CrossRefGoogle Scholar
  12. 12.
    Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates. Circulation. 2001;103:2176–80.CrossRefGoogle Scholar
  13. 13.
    Bellofiore A, Chesler NC. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Ann Biomed Eng. 2013;41:1384–98.CrossRefGoogle Scholar
  14. 14.
    Bombardini T, Costantino MF, Sicari R, et al. End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int. 2013;2013:235194.CrossRefGoogle Scholar
  15. 15.
    Sunagawa K, Yamada A, Senda Y, et al. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng. 1980;27:299–305.CrossRefGoogle Scholar
  16. 16.
    Takeuchi M, Igarashi Y, Tomimoto S, et al. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation. 1991;83:202–12.CrossRefGoogle Scholar
  17. 17.
    Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996;94:2497–506.CrossRefGoogle Scholar
  18. 18.
    Bertini P, Baldassarri R, Simone V, et al. Perioperative non-invasive estimation of left ventricular elastance (Ees) is no longer a challenge; it is a reality. Br J Anaesth. 2014;112:578.CrossRefGoogle Scholar
  19. 19.
    Di Bello V, Giannini C, De Carlo M, et al. Acute improvement in arterial-ventricular coupling after transcatheter aortic valve implantation (CoreValve) in patients with symptomatic aortic stenosis. Int J Cardiovasc Imaging. 2012;28:79–87.CrossRefGoogle Scholar
  20. 20.
    Fournier SB, Donley DA, Bonner DE, et al. Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study. Med Sci Sports Exerc. 2015;47:2–11.CrossRefGoogle Scholar
  21. 21.
    Guarracino F, Ferro B, Morelli A, et al. Ventriculoarterial decoupling in human septic shock. Crit Care. 2014;18:R80.CrossRefGoogle Scholar
  22. 22.
    Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.CrossRefGoogle Scholar
  23. 23.
    Solda PL, Pantaleo P, Perlini S, et al. Continuous monitoring of right ventricular volume changes using a conductance catheter in the rabbit. J Appl Physiol. 1992;73:1770–5.CrossRefGoogle Scholar
  24. 24.
    Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol. 2003;284:H1625–30.CrossRefGoogle Scholar
  25. 25.
    Simon MA, Pinsky MR. Right ventricular dysfunction and failure in chronic pressure overload. Cardiol Res Pract. 2011;2011:568095.CrossRefGoogle Scholar
  26. 26.
    Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9:566–72.CrossRefGoogle Scholar
  27. 27.
    Morelli A, Singer M, Ranieri VM, et al. Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study. Intensive Care Med. 2016;42:1528–34.CrossRefGoogle Scholar
  28. 28.
    Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: A meta-analysis of randomized trials. J Crit Care. 2015;30:908–13.CrossRefGoogle Scholar
  29. 29.
    Yan J, Zhou X, Hu B, et al. Prognostic value of left ventricular-arterial coupling in elderly patients with septic shock. J Crit Care. 2017;42:289–93.CrossRefGoogle Scholar
  30. 30.
    Milewska A, Minczykowski A, Krauze T, et al. Prognosis after acute coronary syndrome in relation with ventricular-arterial coupling and left ventricular strain. Int J Cardiol. 2016;220:343–8.CrossRefGoogle Scholar
  31. 31.
    Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart. 2015;101:37–43.CrossRefGoogle Scholar
  32. 32.
    Downs EA, Isbell JM. Impact of hemodynamic monitoring on clinical outcomes. Best Pract Res Clin Anaesthesiol. 2014;28:463–76.CrossRefGoogle Scholar
  33. 33.
    Guarracino F, Bertini P, Pinsky MR. Novel applications of bedside monitoring to plumb patient hemodynamic state and response to therapy. Minerva Anestesiol. 2018;84:858–64.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesia and Critical Care MedicineAzienda Ospedaliero Universitaria PisanaPisaItaly
  2. 2.Department of Critical Care MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations