Advertisement

Precision Medicine in the Intensive Care Unit: Identifying Opportunities and Overcoming Barriers

  • T. L. PalmieriEmail author
  • N. K. Tran
Chapter
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

Is precision medicine really precise? Precision in medicine can only be achieved with precision diagnostics. Unfortunately, barriers such as access to clean electronic medical data, accurate and precise laboratory tests, and a propensity to over simplify complex pathophysiology hinders this transformation to achieve the ‘four Ps’ of precision medicine: Personalized, Preventive, Predictive, and Participatory.

References

  1. 1.
    Sugeir S, Naylor S. Critical care and personalized or precision medicine: who needs whom? J Crit Care. 2018;43:401–5.CrossRefGoogle Scholar
  2. 2.
    Naylor S. What’s in a name? The evolution of “P-medicine”. J Precision Med. 2015;2:15–29.Google Scholar
  3. 3.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.CrossRefGoogle Scholar
  4. 4.
    Vincent J. The coming era of precision medicine for intensive care. Crit Care. 2017;21(Suppl 3):314.CrossRefGoogle Scholar
  5. 5.
    Redekop WK, Madsi D. The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health. 2013;16:S4–9.CrossRefGoogle Scholar
  6. 6.
    Zhang XD. Precision medicine, personalized medicine, omics, and big data: concepts and relationships. J Pharmacogenomics Pharmacoproteomics. 2015;6:e14.Google Scholar
  7. 7.
    Wong HR. Intensive care medicine in 2050: precision medicine. Intensive Care Med. 2017;43:1507–9.CrossRefGoogle Scholar
  8. 8.
    Langley RJ, Tsalik EL, van Velkinburgh JC, et al. An integrated clinic-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013;5:195ra95.CrossRefGoogle Scholar
  9. 9.
    Aung AK, Haas DW, Hulgan T, Phillips EJ. Pharmacogenomics of antimicrobial agents. Pharmacogenomics. 2014;15:1903–30.CrossRefGoogle Scholar
  10. 10.
    Sweeney TE, Khatri P. Generalizable biomarkers in critical care: toward precision medicine. Crit Care Med. 2017;45:934–9.CrossRefGoogle Scholar
  11. 11.
    Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.CrossRefGoogle Scholar
  12. 12.
    McMahon BA, Koyner JL. Risk stratification for acute kidney injury: are biomarkers enough? Adv Chronic Kidney Dis. 2016;23:167–78.CrossRefGoogle Scholar
  13. 13.
    Ridenour RV, Gada RP, Brost BC, Karon BS. Comparison of lactate values between point-of-care and central laboratory analyzers. Am J Clin Pathol. 2007;128:168–71.CrossRefGoogle Scholar
  14. 14.
    Apple FS. Counterpoint: standardization of cardiac troponin I assays will not occur in my lifetime. Clin Chem. 2011;58:169–71.CrossRefGoogle Scholar
  15. 15.
    Christenson RH, Bunk DM, Schimmel H, et al. Point; Put simply, standardization of cardiac troponin I is complicated. Clin Chem. 2012;58:165–8.CrossRefGoogle Scholar
  16. 16.
    Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem. 2008;45:349–55.CrossRefGoogle Scholar
  17. 17.
    Kost GJ, Tran NK, Louie RF, et al. Assessing the performance of handheld glucose testing for critical care. Diabetes Technol Ther. 2008;10:445–51.CrossRefGoogle Scholar
  18. 18.
    Moss DW, Baron DN, Walker PG, et al. Standardization of clinical enzyme assays. J Clin Pathol. 1971;24:740–3.CrossRefGoogle Scholar
  19. 19.
    Pieroini L, Bargnoux AS, Cristl JP, et al. Did creatinine standardization give benefits to the evaluation of glomerular filtration rate. EJIFCC. 2017;28:251–7.Google Scholar
  20. 20.
    Poller L. International normalized ratios (INR): the first 20 years. J Thromb Haemost. 2004;2:849–60.CrossRefGoogle Scholar
  21. 21.
    Tolan NV, Wockenfus AM, Koch CD, et al. Analytical performance of three whole blood point-of-care lactate devices compared to plasma lactate comparison methods sand a flow-injection mass spectrometry method. Clin Biochem. 2017;50:168–73.CrossRefGoogle Scholar
  22. 22.
    Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomized controlled trial. Lancet Respir Med. 2014;2:611–20.CrossRefGoogle Scholar
  23. 23.
    Famous KR, Delucchi K, Ware LB, et al. ARDS subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2016;195:331–8.CrossRefGoogle Scholar
  24. 24.
    Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med. 1999;340:409–17.CrossRefGoogle Scholar
  25. 25.
    Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.CrossRefGoogle Scholar
  26. 26.
    Investigators TNICE-SUGARS. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.CrossRefGoogle Scholar
  27. 27.
    Ceriotti F, Kaczmarek E, Guerra E, et al. Comparative performance assessment of point-of-care testing devices for measuring glucose and ketones at the patient bedside. J Diabetes Sci Technol. 2015;9:268–77.CrossRefGoogle Scholar
  28. 28.
    Belard A, Buchman T, Dente CJ, Potter BK, Kirk A, Elster E. The Uniformed Services University’s Surgical critical Care Initiative (SC2I): bringing precision medicine to the critically ill. Mil Med. 2018;183:487–95.CrossRefGoogle Scholar
  29. 29.
    Lima K, Caynak R, Tran NK. Lactate monitoring for severe sepsis and septic shock: are all lactate measurements the same? Crit Care Med. 2016;44:443.CrossRefGoogle Scholar
  30. 30.
    Empey PE, Miller TM, Philbrick AH, et al. Mild hypothermia decreases fentanyl and midazolam steady-state clearance in a rat model of cardiac arrest. Crit Care Med. 2012;40:1221–8.CrossRefGoogle Scholar
  31. 31.
    Udy AA, Roberts JA, Lipman J, Blot S. The effects of major burn related pathophysiological changes on the pharmacokinetics and pharmacodynamics of drug use: an appraisal utilizing antibiotics. Adv Drug Deliv Rev. 2017;123:65–74.CrossRefGoogle Scholar
  32. 32.
    Godwin Z, Lima K, Greenhalgh D, Palmieri T, Sen S, Tran NK. A retrospective analysis of clinical laboratory interferences caused by frequently administered medications in burn patients. J Burn Care Res. 2016;37:10–7.CrossRefGoogle Scholar
  33. 33.
    Lauer MS, D’Agostina RB. The randomized registry trial-the next disruptive technology in clinical research? N Engl J Med. 2013;369:1579–81.CrossRefGoogle Scholar
  34. 34.
    Maslove DM, Lamontagne F, Marshall JC, Heyland KD. A path to precision in the ICU. Crit Care. 2017;21:79–88.CrossRefGoogle Scholar
  35. 35.
    Noy NF, Shah NH, Whetzel PL, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009;37:170–3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Firefighters Burn InstituteBurn Center at the University of CaliforniaDavisUSA
  2. 2.Burns DepartmentShriners Hospitals for Children Northern CaliforniaSacramentoUSA
  3. 3.Department of Pathology and Laboratory MedicineUC Davis School of MedicineDavisUSA

Personalised recommendations