Advertisement

Shape Casting pp 293-302 | Cite as

On the Intrinsic and Extrinsic Microstructure-Property Effects in Cast Aluminum Alloys

  • Murat TiryakioğluEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The metallurgy of cast aluminum alloys has been thought to be different from that of wrought alloys. It has been widely accepted that mechanical properties are controlled by dendrite arm spacing, the presence of Fe-bearing particles, and the size of Si particles in Al–Si alloys, which fracture and debond during deformation, leading to premature failure. Whether these effects are intrinsic or mere correlations because of the structural quality of the castings is questioned in this study. By comparing with ideal properties, it is shown that the effect of dendrite arm spacing on elongation, precipitation, and subsequent fracture of β-Al5FeSi platelets and finally Si particle fracture and debonding are all extrinsic.

Keywords

Dendrite arm spacing β-Al5FeSi platelets Si particle fracture Debonding 

References

  1. 1.
    Campbell J (1967) PhD Thesis, University of Birmingham, Birmingham, UKGoogle Scholar
  2. 2.
    Campbell J (1968) Proceedings of the conference on the Solidication of Metals, Brighton, UK, Institute of Metals Publication, pp 18–26Google Scholar
  3. 3.
    Yousefian P, Tiryakioğlu M (2018) Metall Mater Trans A 49:563–575CrossRefGoogle Scholar
  4. 4.
    Tiryakioglu M Metall Mater Trans A (in print)Google Scholar
  5. 5.
    Flemings MC (1974) McGraw-Hill, New York, pp 341Google Scholar
  6. 6.
    Reyes RV, Kakitani R, Costa TA, Spinelli JE, Cheung N, Garcia A (2016) Philos Mag Lett 96:228–237CrossRefGoogle Scholar
  7. 7.
    Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE (2017) Mater Sci Eng A 685:235–243CrossRefGoogle Scholar
  8. 8.
    Duarte RN, Faria JD, Brito C, Veríssimo NC, Cheung N, Garcia A (2016) Int J Mod Phys B 30:1550261CrossRefGoogle Scholar
  9. 9.
    Canté MV, Spinelli JE, Cheung N, Garcia A (2010) Met Mater Int 16:39–49CrossRefGoogle Scholar
  10. 10.
    Tiryakioğlu M, Campbell J (2009) Mater Sci Technol 25:784–789CrossRefGoogle Scholar
  11. 11.
    Tiryakioğlu M, Campbell J, Alexopoulos ND (2009) Metall Mater Trans B 40:802–811CrossRefGoogle Scholar
  12. 12.
    Tiryakioğlu M, Campbell J, Alexopoulos ND (2009) Metall Mater Trans A 40:1000–1007CrossRefGoogle Scholar
  13. 13.
    Tiryakioğlu M, Campbell J, Alexopoulos ND (2009) Mater Sci Eng A 506:23–26CrossRefGoogle Scholar
  14. 14.
    Tiryakioğlu M, Campbell J (2014) Int J Metalcast 8:39–42CrossRefGoogle Scholar
  15. 15.
    Samuel A, Samuel F (1995) J Mater Sci 30:4823–4833CrossRefGoogle Scholar
  16. 16.
    Grosselle F, Timelli G, Bonollo F, Molina R (2009) Metall Sci Technol 27:2–10Google Scholar
  17. 17.
    Grosselle F, Timelli G, Bonollo F, Tiziani A, Della E (2009) Corte, Metallurgia Italiana 101 25–32Google Scholar
  18. 18.
    Wang Q (2003) Metall Mater Trans A 34:2887–2899CrossRefGoogle Scholar
  19. 19.
    Miguelucci E (1985) AFS Trans 93:913–916Google Scholar
  20. 20.
    Tiryakioğlu M, Yousefian P, Eason PD (2018) Metall Mater Trans A 49:5815–5822CrossRefGoogle Scholar
  21. 21.
    Doglione R (2012) JOM 64:51–57CrossRefGoogle Scholar
  22. 22.
    Ghassemali E, Riestra M, Bogdanoff T, Kumar BS, Seifeddine S (2017) Proc Eng 207:19–24CrossRefGoogle Scholar
  23. 23.
    Zhang Chen (2000) Poirier. Fatigue Fract Eng Mater Struct 23:417–423CrossRefGoogle Scholar
  24. 24.
    Vorren O, Evensen J, Pedersen T (1984) AFS Trans 92:459–466Google Scholar
  25. 25.
    Samuel A, Samuel F, Doty H (1996) J Mater Sci 31:5529–5539CrossRefGoogle Scholar
  26. 26.
    Kirkwood D (1985) Mater Sci Eng 73:L1–L4CrossRefGoogle Scholar
  27. 27.
    Saller BD, Hu T, Ma K, Kurmanaeva L, Lavernia EJ, Schoenung JM (2015) J Mater Sci 50:4683–4697CrossRefGoogle Scholar
  28. 28.
    Saller BD, Sha G, Yang LM, Liu F, Ringer SP, Schoenung JM (2017) Philos Mag Lett 97:118–124CrossRefGoogle Scholar
  29. 29.
    Nayak SS, Wollgarten M, Banhart J, Pabi SK, Murty BS (2010) Mater Sci Eng A 527:2370–2378CrossRefGoogle Scholar
  30. 30.
    Shuey RT (2008) Personal communicationGoogle Scholar
  31. 31.
    Puncreobutr C, Phillion AB, Fife JL, Rockett P, Horsfield AP, Lee PD (2014) Acta Mater 79:292–303CrossRefGoogle Scholar
  32. 32.
    Liu K, Cao X, Chen XG (2010) Metall Mater Trans A 42:2004–2016CrossRefGoogle Scholar
  33. 33.
    Cao X, Campbell J (2004) Metall Mater Trans A 35:1425–1435CrossRefGoogle Scholar
  34. 34.
    Cao X, Campbell J (2003) Metall Mater Trans A 34:1409–1420CrossRefGoogle Scholar
  35. 35.
    Cao X, Campbell J (2006) Mater Trans 47:1303–1312CrossRefGoogle Scholar
  36. 36.
    Miller DN, Lu L, Dahle AK (2006) Metall Mater Trans B 37:873–878CrossRefGoogle Scholar
  37. 37.
    Laz PJ, Hillberry BM (1998) Int J Fatigue 20:263–270CrossRefGoogle Scholar
  38. 38.
    Li T, Morris JW, Chrzan DC (2006) Phys Rev B 73:024105CrossRefGoogle Scholar
  39. 39.
    Li T, Morris J Jr, Chrzan D (2004) Phys Rev B 70:054107CrossRefGoogle Scholar
  40. 40.
    Seifeddine S, Johansson S, Svensson IL (2008) Mater Sci Eng A 490:385–390CrossRefGoogle Scholar
  41. 41.
    Zhu T, Li J, Ogata S, Yip S (2009) MRS Bull 34:167–172CrossRefGoogle Scholar
  42. 42.
    Gangulee A, Gurland J (1967) AIME MET SOC TRANS 239:269–272Google Scholar
  43. 43.
    Finlayson T, Griffiths J, Viano D, Fitzpatrick M, Oliver E, Wang Q (2007) In: 2nd International symposium on shape casting, TMS, Warrendale, PA, pp 127–134Google Scholar
  44. 44.
    Caceres C, Griffiths J (1996) Acta Mater 44:25–33CrossRefGoogle Scholar
  45. 45.
    Yeh J-W, Liu W-P (1996) Metall Mater Trans A 27:3558–3568CrossRefGoogle Scholar
  46. 46.
    Poole WJ, Charras N (2005) Mater Sci Eng A 406:300–308CrossRefGoogle Scholar
  47. 47.
    Harris SJ, O’Neill A, Boileau J, Donlon W, Su X, Majumdar B (2007) Acta Mater 55:1681–1693CrossRefGoogle Scholar
  48. 48.
    Joseph S, Kumar S, Bhadram VS, Narayana C (2015) J Alloy Compd 625:296–308CrossRefGoogle Scholar
  49. 49.
    Campbell J (2006) Mater Sci Technol 22:127–145CrossRefGoogle Scholar
  50. 50.
    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J (2005) Phys Rev B 72Google Scholar
  51. 51.
    Dubois SMM, Rignanese GM, Pardoen T, Charlier JC (2006) Phys Rev B 74:235203CrossRefGoogle Scholar
  52. 52.
    Mueller MG, Žagar G, Mortensen A (2018) Acta Mater 143:67–76CrossRefGoogle Scholar
  53. 53.
    Mueller MG, Fornabaio M, Žagar G, Mortensen A (2016) Acta Mater 105:165–175CrossRefGoogle Scholar
  54. 54.
    Mueller MG, Fornabaio M, Mortensen A (2016) J Mater Sci 52:858–868CrossRefGoogle Scholar
  55. 55.
    Xia S, Qi Y, Perry T, Kim K (2009) Acta Mater 57:695–707CrossRefGoogle Scholar
  56. 56.
    Ward DK, Curtin WA, Qi Y (2006) Compos Sci Technol 66:1151–1161CrossRefGoogle Scholar
  57. 57.
    Ward DK, Curtin WA, Qi Y (2006) Acta Mater 54:4441–4451CrossRefGoogle Scholar
  58. 58.
    Noreyan A, Qi Y, Stoilov V (2008) Acta Mater 56:3461–3469CrossRefGoogle Scholar
  59. 59.
    Alexopoulos ND, Tiryakioğlu M, Vasilakos AN, Kourkoulis SK (2014) Mater Sci Eng A 604:40–45CrossRefGoogle Scholar
  60. 60.
    Eisaabadi GB, Yeom GY, Tiryakioğlu M, Netto N, Beygi R, Mehrizi MZ, Kim SK (2018) Mater Sci Eng A 722: 1–7Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.University of North FloridaJacksonvilleUSA

Personalised recommendations