Shape Casting pp 143-150 | Cite as

The Myth of Hydrogen Pores in Aluminum Castings

  • Murat TiryakioğluEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The equilibrium solubility of hydrogen in liquid and solid aluminum is reviewed. Homogeneous and heterogeneous nucleation of hydrogen as pores are evaluated. It has been determined that homogeneous nucleation of hydrogen pores is impossible. Moreover, in situ observations of pore formation in melts with high hydrogen contents are inconsistent with heterogeneous nucleation of hydrogen pores. The only mechanism for hydrogen to contribute to pore formation is the inflation of bifilms by diffusion. Hence, in the absence of bifilms in the melt, measuring and controlling hydrogen content in the melt would be unnecessary.


Supersaturation Fracture pressure Microporosity Nucleation Growth 


  1. 1.
    Talbot DEJ, Anyalebechi PN (1988) Mater Sci Technol 4:1–4CrossRefGoogle Scholar
  2. 2.
    Opie W, Grant N (1950) JOM 2:1237–1241CrossRefGoogle Scholar
  3. 3.
    Sieverts A (1929) Zeitschrift für Metallkunde 21:37–46Google Scholar
  4. 4.
    Ransley CEN (1948) J Inst Met 74:599–620Google Scholar
  5. 5.
    Ichimura M, Imabayashi M, Hayakawa M (1979) J Jpn Inst Met 43:876–883CrossRefGoogle Scholar
  6. 6.
    Tiryakioğlu M, Metall Mater Trans A. (in print)Google Scholar
  7. 7.
    Lu H, Jiang Q (2005) J Phys Chem B 109:15463–15468CrossRefGoogle Scholar
  8. 8.
    Campbell J (2006) Mater Sci Technol 22:127–145CrossRefGoogle Scholar
  9. 9.
    Shahani H, Fredriksson H (1985) Scand J Metall 14:316–320Google Scholar
  10. 10.
    Fukai Y (2003) Phys Scr 2003:11CrossRefGoogle Scholar
  11. 11.
    Thomas G, Willens RH (1966) Acta Metall 14:1385–1390CrossRefGoogle Scholar
  12. 12.
    Birnbaum HK, Buckley C, Zeides F, Sirois E, Rozenak P, Spooner S, Lin JS (1997) J Alloy Compd 253–254:260–264CrossRefGoogle Scholar
  13. 13.
    Ismer L, Park MS, Janotti A, Van de Walle CG, Phys Rev B 80 (2009)Google Scholar
  14. 14.
    Xie D, Li S, Li M, Wang Z, Gumbsch P, Sun J, Ma E, Li J, Shan Z (2016) Nat Commun 7:13341CrossRefGoogle Scholar
  15. 15.
    Rooy E, Fischer E (1968) AFS Trans 76:237–240Google Scholar
  16. 16.
    Brondyke KJH (1964) Transaction of the American Institute of mining, Metall Eng 230:1542–1546Google Scholar
  17. 17.
    Dispinar D, Akhtar S, Nordmark A, Di Sabatino M, Arnberg L (2010) Mater Sci Eng A 527:3719–3725CrossRefGoogle Scholar
  18. 18.
    Griffiths WD, Raiszadeh R (2009) J Mater Sci 44:3402–3407CrossRefGoogle Scholar
  19. 19.
    Apelian D, Mutharasan R (1980) JOM 32:14–19CrossRefGoogle Scholar
  20. 20.
    Haberl K, Schumacher P, Geier G, Stauder B (2009) Metall Mater Trans B 40:812CrossRefGoogle Scholar
  21. 21.
    Yousefian P, Tiryakioğlu M (2018) Metall Mater Trans A 49:563–575CrossRefGoogle Scholar
  22. 22.
    Lei Z, Hengcheng L, Ye P, Qigui W, Guoxiong S (2011) Res DevGoogle Scholar
  23. 23.
    Murphy A, Browne D, Houltz Y, Mathiesen R (2016) IOP conference series: materials science and engineering, IOP Publishing, p 012067Google Scholar
  24. 24.
    Tiryakioğlu M, Yousefian P, Eason PD (2018) Metall Mater Trans A 49:5815–5822CrossRefGoogle Scholar
  25. 25.
    Campbell J (2015) Complete casting handbook: metal casting processes, metallurgy, techniques and design. Elsevier ScienceGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.University of North FloridaJacksonvilleUSA

Personalised recommendations