Advertisement

Prof. Hair’s Contributions to Social Science: A Perspective on the Professor’s Career

  • Wen-Lung Shiau
  • Yide LiuEmail author
Chapter

Abstract

This paper puts forward our personal interpretation of Prof. Hair’s influences. However, it deals with only a small portion of Prof. Hair’s domain. In our view, three parts of Prof. Hair’s contributions emphasize his influence on social science. The first part concerns the PhD students. Prof. Hair is a beacon for PhD studies. The second part concerns the professors. Prof. Hair guides professors in teaching and other academic activities. The final part concerns social science research. Prof. Hair is a pioneer for researchers and practitioners in social science methodology. His words and deeds have inspired us in our careers. We are grateful for this opportunity to show him our sincere respect. We wish abundant happiness and a long, long life to Prof. Hair.

Keywords

Contributions Social science Guide Pioneer Career 

References

  1. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). Mahwah, NJ: Erlbaum.Google Scholar
  2. Chin, W. W. (2003). PLS-graph. Houston, TX: University of Houston.Google Scholar
  3. Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22(1–2), 67–90.CrossRefGoogle Scholar
  4. do Valle, P. O., & Assaker, G. (2015). Using partial least squares structural equation modeling in tourism research: A review of past research and recommendations for future applications. Journal of Travel Research, 55(6), 695–708.CrossRefGoogle Scholar
  5. Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2019, 2010, 2006, 1998). Multivariate data analysis (International Edition). Upper Saddle River NJ: Pearson, Prentice-Hall.Google Scholar
  6. Hair, J. F., Jr., Bush, R. P., & Ortinau, D. J. (2008). Essentials of marketing research (in Chinese Edition) (3rd ed.). Taipei: McGraw-Hill.Google Scholar
  7. Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River: Pearson.Google Scholar
  8. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012a). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340.CrossRefGoogle Scholar
  9. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012b). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433.CrossRefGoogle Scholar
  10. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares (PLS) structural equation modeling. Los Angeles: Sage.Google Scholar
  11. Hair, J. F., Celsi, M., Ortinau, D. J., & Bush, R. P. (2017a). Essentials of marketing research. New York, NY: McGraw-Hill.Google Scholar
  12. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017b). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  13. Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling. Thousand Oaks, CA: Sage.Google Scholar
  14. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New challenges to international marketing (pp. 277–319). Bingley: Emerald Group.CrossRefGoogle Scholar
  15. Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about partial least squares: Comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17(2), 182–209.CrossRefGoogle Scholar
  16. Huang, L. C., & Shiau, W. L. (2017). Factors affecting creativity in information system development: Insights from a decomposition and PLS–MGA. Industrial Management & Data Systems, 117(3), 442–458.CrossRefGoogle Scholar
  17. Jöreskog, K. G., & Wold, H. O. A. (1982). The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects. In H. O. A. Wold & K. G. Jöreskog (Eds.), Systems under indirect observation part I (pp. 263–270). Amsterdam: North-Holland.Google Scholar
  18. Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), 305–328.CrossRefGoogle Scholar
  19. Lohmöller, J.-B. (1984). LVPLS program manual version 1.6 - latent variables path analysis with partial least-squares estimation. Köln, Germany.Google Scholar
  20. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.CrossRefGoogle Scholar
  21. Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480.CrossRefGoogle Scholar
  22. Richter, N. F., Sinkovic, R. R., Ringle, C. M., & Schlägel, C. (2016). A critical look at the use of SEM in international business research. International Marketing Review, 33(3), 376–404.CrossRefGoogle Scholar
  23. Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0.M3. Hamburg: SmartPLS. http://www.smartpls.de Google Scholar
  24. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly, 36(1), iii–xiv.CrossRefGoogle Scholar
  25. Ringle, C. M., Wende, S., & Becker, J. M. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH.Google Scholar
  26. Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researcher. Journal of Family Business Strategy, 5(1), 105–115.CrossRefGoogle Scholar
  27. Shiau, W.-L. (2013). Introduction and application of statistical analysis: SPSS+ PLS-SEM(SmartPLS). Taipei: Gotop.Google Scholar
  28. Shiau, W.-L. (2016). Introduction and application of statistical analysis: SPSS+ SmartPLS 3(PLS-SEM). Taipei: Gotop.Google Scholar
  29. Shiau, W.-L. (2018). Introduction and application of statistical analysis: SPSS+ SmartPLS 3(PLS-SEM) (2nd ed.). Taipei: Gotop.Google Scholar
  30. Shiau, W.-L., & Chau, P. Y. K. (2016). Understanding behavioral intention to use a cloud computing classroom: A multiple model-comparison approach. Information & Management, 53(3), 355–365.CrossRefGoogle Scholar
  31. Willaby, H. W., Costa, D. S., Burns, B. D., MacCann, C., & Roberts, R. D. (2015). Testing complex models with small sample sizes: A historical overview and empirical demonstration of what partial least squares (PLS) can offer differential psychology. Personality and Individual Differences, 84, 73–78.CrossRefGoogle Scholar
  32. Wold, H. (1974). Causal flows with latent variables: Partings of ways in the light of NIPALS modelling. European Economic Review, 5(1), 67–86.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Business AdministrationZhejiang University of TechnologyZhejiangChina
  2. 2.School of BusinessMacau University of Science and TechnologyTaipaMacau

Personalised recommendations