Advertisement

Interactive Visualization for Large-Scale Multi-factorial Research Designs

  • Andreas FriedrichEmail author
  • Luis de la Garza
  • Oliver Kohlbacher
  • Sven Nahnsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11371)

Abstract

Recent publications have shown that the majority of studies cannot be adequately reproduced. The underlying causes seem to be diverse. Usage of the wrong statistical tools can lead to the reporting of dubious correlations as significant results. Missing information from lab protocols or other metadata can make verification impossible. Especially with the advent of Big Data in the life sciences and the hereby-involved measurement of thousands of multi-omics samples, researchers depend more than ever on adequate metadata annotation. In recent years, the scientific community has created multiple experimental design standards, which try to define the minimum information necessary to make experiments reproducible. Tools help with creation or analysis of this abundance of metadata, but are often still based on spreadsheet formats and lack intuitive visualizations. We present an interactive graph visualization tailored to experiments using a factorial experimental design. Our solution summarizes sample sources and extracted samples based on similarity of independent variables, enabling a quick grasp of the scientific question at the core of the experiment even for large studies. We support the ISA-Tab standard, enabling visualization of diverse omics experiments. As part of our platform for data-driven biomedical research, our implementation offers additional features to detect the status of data generation and more.

Keywords

Experimental design Aggregation graph Metadata Portal Reproducibility 

References

  1. 1.
    Bostock, M., Ogievetsky, V., Heer, J.: D\(^3\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  2. 2.
    Brazma, A.: Minimum information about a microarray experiment (MIAME)-successes, failures, challenges. Sci. World J. 9, 420–423 (2009)CrossRefGoogle Scholar
  3. 3.
    Brazma, A., et al.: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29(4), 365–371 (2001)CrossRefGoogle Scholar
  4. 4.
    Collins, F.S., Tabak, L.A.: NIH plans to enhance reproducibility. Nature 505(7485), 612 (2014)CrossRefGoogle Scholar
  5. 5.
    Fisher, R.: Introduction to “the arrangement of field experiments”. J. Min. Agric. Gr. Br. 33, 503–513 (1926)Google Scholar
  6. 6.
    Fisher, R.A.: The Design of Experiments. Oliver and Boyd, Edinburgh, London (1937)zbMATHGoogle Scholar
  7. 7.
    Friedrich, A., Kenar, E., Kohlbacher, O., Nahnsen, S.: Intuitive web-based experimental design for high-throughput biomedical data. BioMed Res. Int. 2015 (2015). Article ID 958302, 8 p.Google Scholar
  8. 8.
    Gonzalez-Beltran, A., Maguire, E., Georgiou, P., Sansone, S.A., Rocca-Serra, P.: Bio-GraphIIn: a graph-based, integrative and semantically-enabled repository for life science experimental data. EMBnet. J. 19(B), 46 (2013)CrossRefGoogle Scholar
  9. 9.
    González-Beltrán, A., Maguire, E., Rocca-Serra, P., Sansone, S.A.: The open source ISA software suite and its international user community: knowledge management of experimental data. EMBnet. J. 18(B), 35 (2012)CrossRefGoogle Scholar
  10. 10.
    González-Beltrán, A., Maguire, E., Sansone, S.A., Rocca-Serra, P.: linkedISA: semantic representation of ISA-Tab experimental metadata. BMC Bioinform. 15(14), S4 (2014)CrossRefGoogle Scholar
  11. 11.
    Haug, K., et al.: Metabolights-an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41(D1), D781–D786 (2012)CrossRefGoogle Scholar
  12. 12.
    Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(Suppl. 1), D355–D360 (2009)Google Scholar
  13. 13.
    Lamichhane, S., et al.: Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes: type 1 diabetes prediction and prevention study (DIPP). bioRxiv, p. 294033 (2018)Google Scholar
  14. 14.
    Mohr, C., et al.: qPortal: a platform for data-driven biomedical research. PloS One 13(1), e0191603 (2018)CrossRefGoogle Scholar
  15. 15.
    Pettitt, C.: dagre - graph layout for JavaScript (2014). https://github.com/dagrejs/dagre
  16. 16.
    Rayner, T.F., et al.: A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinform. 7(1), 489 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Reips, U.D., Neuhaus, C.: WEXTOR: a web-based tool for generating and visualizing experimental designs and procedures. Behav. Res. Methods, Instrum., Comput. 34(2), 234–240 (2002)CrossRefGoogle Scholar
  18. 18.
    Sansone, S.A., et al.: The first RSBI (ISA-TAB) workshop: “can a simple format work for complex studies?”. OMICS J. Integr. Biol. 12(2), 143–149 (2008)CrossRefGoogle Scholar
  19. 19.
    Sansone, S.A., et al.: Toward interoperable bioscience data. Nat. Genet. 44(2), 121 (2012)CrossRefGoogle Scholar
  20. 20.
    Spellman, P.T., et al.: Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3(9), research0046-1 (2002)Google Scholar
  21. 21.
    Taylor, C.F., et al.: The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25(8), 887–893 (2007)CrossRefGoogle Scholar
  22. 22.
    Tyanova, S., Mann, M., Cox, J.: MaxQuant for in-depth analysis of large SILAC datasets. In: Warscheid, B. (ed.) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC): Methods and Protocols. MMB, vol. 1188, pp. 351–364. Springer, New York (2014).  https://doi.org/10.1007/978-1-4939-1142-4_24CrossRefGoogle Scholar
  23. 23.
    Vasilevsky, N.A., et al.: On the reproducibility of science: unique identification of research resources in the biomedical literature. PeerJ 1, e148 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Quantitative Biology Center (QBiC)University of TübingenTübingenGermany
  2. 2.Center for Bioinformatics, Department of Computer ScienceUniversity of TübingenTübingenGermany
  3. 3.Biomolecular InteractionsMax Planck Institute for Developmental BiologyTübingenGermany
  4. 4.Institute for Translational BioinformaticsUniversity Hospital TübingenTübingenGermany

Personalised recommendations