Using Semantic Programming for Developing a Web Content Management System for Semantic Phenotype Data

  • Lars VogtEmail author
  • Roman Baum
  • Christian Köhler
  • Sandra Meid
  • Björn Quast
  • Peter Grobe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11371)


We present a prototype of a semantic version of Morph·D·Base that is currently in development. It is based on SOCCOMAS, a semantic web content management system that is controlled by a set of source code ontologies together with a Java-based middleware and our Semantic Programming Ontology (SPrO). The middleware interprets the descriptions contained in the source code ontologies and dynamically decodes and executes them to produce the prototype. The Morph·D·Base prototype in turn allows the generation of instance-based semantic morphological descriptions through completing input forms. User input to these forms generates data in form of semantic graphs. We show with examples how the prototype has been described in the source code ontologies using SPrO and demonstrate live how the middleware interprets these descriptions and dynamically produces the application.


Semantic programming Phenotypic data Linked open data Semantic Morph·D·Base Semantic annotation Morphological data 


  1. 1.
    Smith, B.: Ontology. In: Floridi, L. (ed.) Blackwell Guide to the Philosophy of Computing and Information, pp. 155–166. Blackwell Publishing, Oxford (2003)Google Scholar
  2. 2.
    Schulz, S., Stenzhorn, H., Boeker, M., Smith, B.: Strengths and limitations of formal ontologies in the biomedical domain. RECIIS 3, 31–45 (2009)Google Scholar
  3. 3.
    Schulz, S., Jansen, L.: Formal ontologies in biomedical knowledge representation. IMIA Yearb. Med. Inform. 2013(8), 132–146 (2013)Google Scholar
  4. 4.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11, 39–136 (1996)CrossRefGoogle Scholar
  5. 5.
    Sansone, S.-A., Rocca-Serra, P., Tong, W., Fostel, J., Morrison, N., et al.: A strategy capitalizing on synergies: the reporting structure for biological investigation (RSBI) working group. OMICS: J Integr. Biol. 10, 164–171 (2006)CrossRefGoogle Scholar
  6. 6.
    Vogt, L.: The future role of bio-ontologies for developing a general data standard in biology: chance and challenge for zoo-morphology. Zoomorphology 128, 201–217 (2009)CrossRefGoogle Scholar
  7. 7.
    Vogt, L., Nickel, M., Jenner, R.A., Deans, A.R.: The need for data standards in zoomorphology. J. Morphol. 274, 793–808 (2013)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)CrossRefGoogle Scholar
  9. 9.
    Brazma, A.: On the importance of standardisation in life sciences. Bioinformatics 17, 113–114 (2001)CrossRefGoogle Scholar
  10. 10.
    Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., et al.: Minimum information about a microarray experiment (MIAME)–toward standards for microarray data. Nat. Genet. 29, 365–371 (2001)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: how semantic web technologies will change the design of “omic” standards. Nat. Biotechnol. 23, 1099–1103 (2005)CrossRefGoogle Scholar
  12. 12.
    Vogt, L.: eScience and the need for data standards in the life sciences: in pursuit of objectivity rather than truth. Syst. Biodivers. 11, 257–270 (2013)CrossRefGoogle Scholar
  13. 13.
    SPARQL Query Language for RDF. W3C Recommendation, 15 January 2008Google Scholar
  14. 14.
    GitHub: code for semantic programming ontology (SPrO).
  15. 15.
    Wenzel, K.: KOMMA: An application framework for ontology-based software systems. Semant. Web J. swj89_0, 1–10 (2010)Google Scholar
  16. 16.
    Buranarach, M., Supnithi, T., Thein, Y.M., Ruangrajitpakorn, T., Rattanasawad, T., et al.: OAM: an ontology application management framework for simplifying ontology-based semantic web application development. Int. J. Softw. Eng. Knowl. Eng. 26, 115–145 (2016)CrossRefGoogle Scholar
  17. 17.
    GitHub: code for semantic ontology-controlled web content management system (SOCCOMAS).
  18. 18.
    Berners-Lee, T.: Linked data. (2009).
  19. 19.
    Semantic Morph•D•Base Prototype.
  20. 20.
    GitHub: Code for semantic Morph·D·Base prototype.
  21. 21.
    Deans, A.R., Lewis, S.E., Huala, E., Anzaldo, S.S., Ashburner, M., et al.: Finding our way through phenotypes. PLoS Biol. 13, e1002033 (2015)CrossRefGoogle Scholar
  22. 22.
    Mikó, I., Deans, A.R.: Phenotypes in insect biodiversity research phenotype data : past and present. In: Foottit, R.G., Adler, P.H. (eds.) Insect Biodiversity: Science and Society, vol. II, pp. 789–800. Wiley, Hoboken (2018)CrossRefGoogle Scholar
  23. 23.
    Vogt, L., Bartolomaeus, T., Giribet, G.: The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26, 301–325 (2010)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Phenotype And Trait Ontology (PATO).
  26. 26.
    Vogt, L.: Assessing similarity: on homology, characters and the need for a semantic approach to non-evolutionary comparative homology. Cladistics 33, 513–539 (2017)CrossRefGoogle Scholar
  27. 27.
    Vogt, L.: Towards a semantic approach to numerical tree inference in phylogenetics. Cladistics 34, 200–224 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität Bonn, IEZBonnGermany
  2. 2.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany

Personalised recommendations