Advertisement

The Hannover Medical School Enterprise Clinical Research Data Warehouse: 5 Years of Experience

  • Svetlana GerbelEmail author
  • Hans Laser
  • Norman Schönfeld
  • Tobias Rassmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11371)

Abstract

The reuse of routine healthcare data for research purposes is challenging not only because of the volume of the data but also because of the variety of clinical information systems. A data warehouse based approach enables researchers to use heterogeneous data sets by consolidating and aggregating data from various sources. This paper presents the Enterprise Clinical Research Data Warehouse (ECRDW) of the Hannover Medical School (MHH). ECRDW has been developed since 2011 using the Microsoft SQL Server Data Warehouse and Business Intelligence technology and operates since 2013 as an interdisciplinary platform for research relevant questions at the MHH. ECRDW incrementally integrates heterogeneous data sources and currently contains (as of 8/2018) data of more than 2,1 million distinct patients with more than 500 million single data points (diagnoses, lab results, vital signs, medical records, as well as metadata to linked data, e.g. biospecimen or images).

Keywords

Clinical Research Data Warehouse Secondary use of clinical data Data integration BI Data and process quality Text mining KDD System architecture 

References

  1. 1.
    Meystre, S.M. et al.: Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress (2017).  https://doi.org/10.15265/iy-2017-007CrossRefGoogle Scholar
  2. 2.
    Tolxdorff, T., Puppe, F.: Klinisches data warehouse. Inform. Spektrum 39, 233–237 (2016).  https://doi.org/10.1007/s00287-016-0968-3CrossRefGoogle Scholar
  3. 3.
    Strasser, N.: RDA - Systeme an Universitätskliniken in Deutschland (2010)Google Scholar
  4. 4.
    Teasdale, S., et al.: Secondary uses of clinical data in primary care. Inform. Prim. Care 15(3), 157–166 (2007).  https://doi.org/10.14236/jhi.v15i3.654CrossRefGoogle Scholar
  5. 5.
    Bonney, W.: Applicability of business intelligence in electronic health record. Procedia - Soc. Behav. Sci. 73, 257–262 (2013).  https://doi.org/10.1016/j.sbspro.2013.02.050CrossRefGoogle Scholar
  6. 6.
    Mucksch, H., Behme, W.: Das Data Warehouse-Konzept, 4th edn. Gabler Verlag, Wiesbaden (2000)CrossRefGoogle Scholar
  7. 7.
    Gerbel, S., Laser, H., Haarbrandt, B.: Das Klinische Data Warehouse der Medizinischen Hochschule Hannover. In: Forum der Medizin_Dokumentation und Medizin_Informatik, no. 2, pp. 49–52 (2014)Google Scholar
  8. 8.
    Dugas, M., Lange, M., Müller-Tidow, C., Kirchhof, P., Prokosch, H.U.: Routine data from hospital information systems can support patient recruitment for clinical studies. Clin. Trials, 183–189 (2010).  https://doi.org/10.1177/1740774510363013CrossRefGoogle Scholar
  9. 9.
    Murphy, S.N., et al.: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J. Am. Med. Inform. Assoc. 17, 124–130 (2010)CrossRefGoogle Scholar
  10. 10.
    Jannot, A.-S., et al.: The Georges Pompidou University hospital clinical data warehouse: a 8-years follow-up experience. Int. J. Med. Inform. 102, 21–28 (2017)CrossRefGoogle Scholar
  11. 11.
    Medizinische Hochschule Hannover. Jahresbericht der MHH (2016). https://www.mh-hannover.de/fileadmin/mhh/bilder/ueberblick_service/publikationen/Jahresbericht_2016_GESAMT_FINAL_31.08.2017.pdf. Accessed 15 Sept 2018
  12. 12.
    OVH SAS: Understanding Tier 3 and Tier 4 (2018). https://www.ovh.com/world/dedicated-servers/understanding-t3-t4.xml. Accessed 15 Sept 2018
  13. 13.
    Gartner Inc.: Magic Quadrant for Analytics and Business Intelligence Platforms (2018). https://www.gartner.com/doc/reprints?id=1-4RVOBDE&ct=180226&st=sb. Accessed 15 Sept 2018
  14. 14.
    Inmon, W.H.: Building the Data Warehouse, 3rd edn. Ipsen, R. (ed.). Wiley, Hoboken (2002)Google Scholar
  15. 15.
    Arbeitsgruppe Erhebung und Nutzung von Sekundärdaten (AGENS), et al.: Deutsche Gesellschaft für Epidemiologie e. V (2012). http://dgepi.de/fileadmin/pdf/leitlinien/GPS_fassung3.pdf. Accessed 15 Sept 2018
  16. 16.
    Thadani, S.R., et al.: Electronic screening improves efficiency in clinical trial recruitment. J. Am. Med. Inform. Assoc. 16(6), 869–873 (2009).  https://doi.org/10.1197/jamia.M3119CrossRefGoogle Scholar
  17. 17.
    Sandhu, E., et al.: Secondary uses of electronic health record data: benefits and barriers. Jt. Comm. J. Qual. Patient Saf. 38, 34–40 (2012).  https://doi.org/10.1016/S1553-7250(12)38005-7CrossRefGoogle Scholar
  18. 18.
    Beresniak, A., et al.: Cost-benefit assessment of using electronic health records data for clinical research versus current practices: contribution of the electronic health records for clinical research (EHR4CR) European project. Contemp. Clin. Trials 46, 85–91 (2016).  https://doi.org/10.1016/j.cct.2015.11.011CrossRefGoogle Scholar
  19. 19.
    Coorevits, P., et al.: Electronic health records: new opportunities for clinical research. J. Intern. Med. 274, 547–560 (2013).  https://doi.org/10.1111/joim.12119CrossRefGoogle Scholar
  20. 20.
    Just, B.H., et al.: Why Patient matching is a challenge: research on master patient index (MPI) data discrepancies in key identifying fields. Perspectives in Health Information Management (2016). PMC4832129Google Scholar
  21. 21.
    Wang, R., Strong, D.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1997).  https://doi.org/10.1080/07421222.1996.11518099CrossRefGoogle Scholar
  22. 22.
    Rassmann, T.: Entwicklung eines Verfahrens zur integrierten Abbildung und Analyse der Qualität von Forschungsdaten in einem klinischen Datawarehouse, Dissertation (2018)Google Scholar
  23. 23.
    Prather, J.C., et al.: Medical data mining: knowledge discovery in a clinical data warehouse. In: Proceedings of the AMIA Annual Symposium, pp. 101–105 (1997). PMC2233405Google Scholar
  24. 24.
    Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).  https://doi.org/10.1038/sdata.2016.18CrossRefGoogle Scholar
  25. 25.
    Konsortium HiGHmed: Heidelberg - Göttingen - Hannover Medical Informatics. http://www.medizininformatik-initiative.de/de/konsortien/highmed. Accessed 31 July 2018
  26. 26.
    German Biobank Alliance (GBA). https://www.bbmri.de/ueber-gbn/german-biobank-alliance/. Accessed 31 July 2018
  27. 27.
    Electronic Health Records for Clinical Research - (EHR4CR). http://www.ehr4cr.eu/. Accessed 31 July 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hannover Medical SchoolHannoverGermany
  2. 2.Volkswagen Financial Services AGBrunswickGermany

Personalised recommendations