Automatic Program Rewriting in Non-Ground Answer Set Programs

  • Nicholas HippenEmail author
  • Yuliya Lierler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11372)


Answer set programming is a popular constraint programming paradigm that has seen wide use across various industry applications. However, logic programs under answer set semantics often require careful design and nontrivial expertise from a programmer to obtain satisfactory solving times. In order to reduce this burden on a software engineer we propose an automated rewriting technique for non-ground logic programs that we implement in a system projector. We conduct rigorous experimental analysis, which shows that applying system projector to a logic program can improve its performance, even after significant human-performed optimizations.


  1. 1.
    Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems. Ann. Math. Artif. Intell. 47(1–2), 183–219 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bichler, M.: Optimizing non-ground answer set programs via rule decomposition. Bachelor thesis. TU Wien (2015)Google Scholar
  3. 3.
    Bichler, M., Morak, M., Woltran, S.: lpopt: a rule optimization tool for answer set programming. In: Proceedings of International Symposium on Logic-Based Program Synthesis and Transformation (2016)Google Scholar
  4. 4.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  5. 5.
    Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR) (2015)Google Scholar
  6. 6.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory and implementation. In: Proceedings of International Conference on Logic Programming (ICLP), pp. 407–424 (2008)Google Scholar
  7. 7.
    Calimeri, F., Fusca, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)CrossRefGoogle Scholar
  8. 8.
    Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: Optimizing answer set computation via heuristic-based decomposition. In: Calimeri, F., Hamlen, K., Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 135–151. Springer, Cham (2018). Scholar
  9. 9.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016). Scholar
  10. 10.
    Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR) (2006)Google Scholar
  11. 11.
    Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replacements in non-ground answer-set programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480. Springer, Heidelberg (2006). Scholar
  12. 12.
    Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using database optimization techniques for nonmonotonic reasoning, pp. 135–139 (1999)Google Scholar
  13. 13.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (2010).
  14. 14.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set solving. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 74–90. Springer, Heidelberg (2011). Scholar
  15. 15.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for answer set solving. In: Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 15–19. IOS Press, Amsterdam (2008).
  16. 16.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007). Scholar
  18. 18.
    Lierler, Y.: SAT-based Answer Set Programming. Ph.D. thesis, University of Texas at Austin (2010)Google Scholar
  19. 19.
    Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and competitions. AI Mag. 37(3), 45–52 (2016)CrossRefGoogle Scholar
  20. 20.
    Lierler, Y., Schüller, P.: Parsing combinatory categorial grammar via planning in answer set programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 436–453. Springer, Heidelberg (2012). Scholar
  21. 21.
    Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Nebraska OmahaOmahaUSA

Personalised recommendations