Advertisement

Strong Equivalence and Program’s Structure in Arguing Essential Equivalence Between First-Order Logic Programs

  • Yuliya LierlerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11372)

Abstract

Answer set programming is a prominent declarative programming paradigm used in formulating combinatorial search problems and implementing distinct knowledge representation formalisms. It is common that several related and yet substantially different answer set programs exist for a given problem. Sometimes these encodings may display significantly different performance. Uncovering precise formal links between these programs is often important and yet far from trivial. This paper claims the correctness of a number of interesting program rewritings. Notably, they assume programs with variables and such important language features as choice, disjunction, and aggregates.

Notes

Acknowledgements

We are grateful to Vladimir Lifschitz and Miroslaw Truszczynski for valuable discussions on the subject of this paper. Yuliya Lierler was partially supported by the NSF 1707371 grant.

References

  1. 1.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12, 53–87 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  3. 3.
    Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 186–198. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_17CrossRefzbMATHGoogle Scholar
  4. 4.
    Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24599-5_16CrossRefzbMATHGoogle Scholar
  5. 5.
    Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR) (2006)Google Scholar
  6. 6.
    Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 97–102 (2005)Google Scholar
  7. 7.
    Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replacements in non-ground answer-set programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480. Springer, Heidelberg (2006).  https://doi.org/10.1007/11853886_41CrossRefGoogle Scholar
  8. 8.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005).  https://doi.org/10.1007/11546207_10CrossRefGoogle Scholar
  9. 9.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell. 175, 236–263 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 797–803. IJCAI press (2009)Google Scholar
  11. 11.
    Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory Pract. Log. Program. 5, 45–74 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo. Theory Pract. Log. Program. 15, 449–463 (2015).  https://doi.org/10.1017/S1471068415000150. http://journals.cambridge.org/article_S1471068415000150MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  14. 14.
    Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive defaults. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 230–237 (1991)Google Scholar
  15. 15.
    Harrison, A., Lierler, Y.: First-order modular logic programs and their conservative extensions. In: Theory and Practice of Logic programming, 32nd International Conference on Logic Programming (ICLP) Special Issue (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. In: Procedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp. 175–187 (2007)Google Scholar
  17. 17.
    Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 472–479 (2008)Google Scholar
  18. 18.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2, 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72200-7_17CrossRefzbMATHGoogle Scholar
  20. 20.
    Linke, T., Tompits, H., Woltran, S.: On acyclic and head-cycle free nested logic programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 225–239. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27775-0_16CrossRefzbMATHGoogle Scholar
  21. 21.
    Mints, G.: A Short Introduction to Intuitionistic Logic. Springer, New York (2000)zbMATHGoogle Scholar
  22. 22.
    Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in answer set programming. J. Comput. Syst. Sci. 78(1), 86–104 (2012).  https://doi.org/10.1016/j.jcss.2011.02.013. http://www.sciencedirect.com/science/article/pii/S0022000011000420, jCSS Knowledge Representation and ReasoningMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Woltran, S.: Characterizations for relativized notions of equivalence in answer set programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30227-8_16CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Nebraska at OmahaOmahaUSA

Personalised recommendations