Advertisement

Scheduling Simultaneous Resources: A Case Study on a Calibration Laboratory

  • Roberto Tavares NetoEmail author
  • Fabio Molina da SilvaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11299)

Abstract

A calibration laboratory studied in this research performs a thermal test that requires an analyst for setup and processing and an oven to perform such an essay. For convenience, it’s possible to group some of the essays according to the oven capacity. In this scenario, this paper proposes a scheduling approach to minimize the total flowtime of the orders. This is a multiple resource scheduling problem, where a resource (operator) is used on two processes (oven setup and analysis). In contrast to the classical definition of multiple resource scheduling problems, the oven setup process requires the presence of the operator only for the startup of the process. To solve this problem, we derived: (i) a mixed-integer formulation; (ii) an Ant Colony Optimization (ACO) approach. On those developments, we also discuss some structural properties of this problem, that may lead to further advances in this field in the future. Our results show the ACO approach as a good alternative to the MIP, especially when solving instances with 30 service orders.

Keywords

Multiple resource scheduling Ant Colony Optimization Multiple constraint scheduling 

References

  1. 1.
    Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008).  https://doi.org/10.1016/j.ejor.2006.06.060. http://www.sciencedirect.com/science/article/pii/S0377221706008174MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Behnamian, J., Ghomi, S.F., Jolai, F., Amirtaheri, O.: Realistic two-stage flowshop batch scheduling problems with transportation capacity and times. Appl. Math. Model. 36(2), 723–735 (2012).  https://doi.org/10.1016/j.apm.2011.07.011. http://www.sciencedirect.com/science/article/pii/S0307904X1100391XMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belaid, R., Tkindt, V., Esswein, C.: Scheduling batches in flowshop with limited buffers in the shampoo industry. Eur. J. Oper. Res. 223(2), 560–572 (2012).  https://doi.org/10.1016/j.ejor.2012.06.035. http://www.sciencedirect.com/science/article/pii/S0377221712004900MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, C.: Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)CrossRefGoogle Scholar
  5. 5.
    Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016).  https://doi.org/10.1016/j.cie.2015.12.007. http://www.sciencedirect.com/science/article/pii/S0360835215004775CrossRefGoogle Scholar
  6. 6.
    Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbooks in Operations Research and Management Science: Transportation, vol. 14, pp. 367–428. Elsevier, Amsterdam (2007).  https://doi.org/10.1016/S0927-0507(06)14006-2. http://www.sciencedirect.com/science/article/pii/S0927050706140062CrossRefGoogle Scholar
  7. 7.
    Dastidar, S.G., Nagi, R.: Scheduling injection molding operations with multiple resource constraints and sequence dependent setup times and costs. Comput. Oper. Res. 32(11), 2987–3005 (2005).  https://doi.org/10.1016/j.cor.2004.04.012. http://www.sciencedirect.com/science/article/pii/S0305054804000899CrossRefzbMATHGoogle Scholar
  8. 8.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony or cooperating agents. IEEE Trans. Syst. Man Cybern.-Part B 26, 29–41 (1996)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005).  https://doi.org/10.1016/j.tcs.2005.05.020MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  12. 12.
    Ham, A.: Scheduling of dual resource constrained lithography production: using CP and MIP/CP. IEEE Trans. Semicond. Manuf. 31(1), 52–61 (2018).  https://doi.org/10.1109/TSM.2017.2768899CrossRefGoogle Scholar
  13. 13.
    Li, J., Huang, Y., Niu, X.: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem. Comput. Ind. Eng. 102, 113–131 (2016).  https://doi.org/10.1016/j.cie.2016.10.012. http://www.sciencedirect.com/science/article/pii/S0360835216303813CrossRefGoogle Scholar
  14. 14.
    Liao, C.J., Liao, L.M.: Improved MILP models for two-machine flowshop with batch processing machines. Math. Comput. Model. 48(7), 1254–1264 (2008).  https://doi.org/10.1016/j.mcm.2008.01.001. http://www.sciencedirect.com/science/article/pii/S089571770800040XMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lpez-Ibez, M., Dubois-Lacoste, J., Cceres, L.P., Birattari, M., Sttzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002).  https://doi.org/10.1109/TEVC.2002.802450CrossRefzbMATHGoogle Scholar
  17. 17.
    Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004). http://ideas.repec.org/a/eee/ejores/v155y2004i2p426-438.htmlCrossRefGoogle Scholar
  18. 18.
    Smith, W.E.: Various optimizers for single state production. Naval Res. Logist. Q. 3, 59–66 (1956)CrossRefGoogle Scholar
  19. 19.
    Tang, L., Liu, P.: Minimizing makespan in a two-machine flowshop scheduling with batching and release time. Math. Comput. Model. 49(5), 1071–1077 (2009).  https://doi.org/10.1016/j.mcm.2008.09.012. http://www.sciencedirect.com/science/article/pii/S0895717708003476MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, W., Ma, C., Bao, Z., Ren, X.: A multi-objective model of integrated collaborative planning and scheduling for dual-resource and its algorithm. In: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 400–403, August 2016.  https://doi.org/10.1109/IHMSC.2016.154
  21. 21.
    Xu, J., Xu, X., Xie, S.: Recent developments in dual resource constrained (DRC) system research. Eur. J. Oper. Res. 215(2), 309–318 (2011).  https://doi.org/10.1016/j.ejor.2011.03.004. http://www.sciencedirect.com/science/article/pii/S0377221711002153CrossRefGoogle Scholar
  22. 22.
    Zaerpour, F., Bischak, D.P., Menezes, M.B.: Coordinated lab-clinics: a tactical assignment problem in healthcare. Eur. J. Oper. Res. 263(1), 283–294 (2017).  https://doi.org/10.1016/j.ejor.2017.05.012. http://www.sciencedirect.com/science/article/pii/S037722171730440XMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, Y., Liu, S., Sun, S.: Clustering and genetic algorithm based hybrid flowshop scheduling with multiple operations. Math. Prob. Eng. 2014, 8 p. (2014). Article ID 167073.  https://doi.org/10.1155/2014/167073MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal University of Sao CarlosSao PauloBrazil

Personalised recommendations