Advertisement

A Self-adaptive Differential Evolution with Fragment Insertion for the Protein Structure Prediction Problem

  • Renan S. Silva
  • Rafael Stubs ParpinelliEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11299)

Abstract

This work presents four hybrid methods based on the Self-adaptive Differential Evolution algorithm with fragment insertion applied to the protein structure prediction problem. The protein representation is the backbone torsion angles with side chain centroid coordinates. The fragment insertion is made by the Monte Carlo algorithm. The hybrid methods were compared with recent and compatible methods from the literature, where two proposed approaches achieved competitive results. The results have shown that using parameter control and fragment insertion greatly improves the results of the prediction when compared to fragment-less methods or without parameter control. Furthermore, an extra analysis was conducted using GDT-TS and TM-Score metrics to better understand the results obtained.

Keywords

Structural biology Bioinformatics Evolutionary algorithms Parameter control Monte Carlo search 

References

  1. 1.
    Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5(1), 27–40 (1998)CrossRefGoogle Scholar
  2. 2.
    Berman, H.M., et al.: The protein data bank. Acta Crystallogr. Sect. D: Biol. Crystallogr. 58(6), 899–907 (2002)CrossRefGoogle Scholar
  3. 3.
    Borguesan, B., e Silva, M.B., Grisci, B., Inostroza-Ponta, M., Dorn, M.: APL: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput. Biol. Chem. 59, 142–157 (2015)CrossRefGoogle Scholar
  4. 4.
    Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., Jones, D.T.: Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41(W1), W349–W357 (2013)CrossRefGoogle Scholar
  5. 5.
    Dorn, M., e Silva, M.B., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure prediction: methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)CrossRefGoogle Scholar
  6. 6.
    Drenth, J.: Principles of Protein X-Ray Crystallography. Springer, New York (2007).  https://doi.org/10.1007/0-387-33746-6CrossRefGoogle Scholar
  7. 7.
    Garza-Fabre, M., Kandathil, S.M., Handl, J., Knowles, J., Lovell, S.C.: Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol. Comput. 24(4), 577–607 (2016)CrossRefGoogle Scholar
  8. 8.
    Habeck, M., Nilges, M., Rieping, W.: Replica-exchange Monte Carlo scheme for Bayesian data analysis. Phys. Rev. Lett. 94(1), 018105 (2005)CrossRefGoogle Scholar
  9. 9.
    Hart, W.E., Istrail, S.: Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. J. Comput. Biol. 4(1), 1–22 (1997)CrossRefGoogle Scholar
  10. 10.
    Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)CrossRefGoogle Scholar
  11. 11.
    Liu, J., Li, G., Yu, J., Yao, Y.: Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model. Comput. Biol. Chem. 38, 17–26 (2012)CrossRefGoogle Scholar
  12. 12.
    Lopes, H.S.: Evolutionary algorithms for the protein folding problem: a review and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp. 297–315. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70778-3_12CrossRefGoogle Scholar
  13. 13.
    Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A.: Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins: Struct. Funct. Bioinf. 84(S1), 4–14 (2016)CrossRefGoogle Scholar
  14. 14.
    Narloch, P.H., Parpinelli, R.S.: The protein structure prediction problem approached by a cascade differential evolution algorithm using ROSETTA, pp. 294–299. IEEE (2017)Google Scholar
  15. 15.
    Nunes, L.F., Galvão, L.C., Lopes, H.S., Moscato, P., Berretta, R.: An integer programming model for protein structure prediction using the 3D-HP side chain model. Discrete Appl. Math. 198, 206–214 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    de Oliveira, S.H., Shi, J., Deane, C.M.: Building a better fragment library for de novo protein structure prediction. PloS One 10(4), e0123998 (2015)CrossRefGoogle Scholar
  17. 17.
    Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence; a survey. Int. J. Bio-Inspir. Comput. 3(1), 1–16 (2011)CrossRefGoogle Scholar
  18. 18.
    Parpinelli, R.S., Plichoski, G.F., Da Silva, R.S., Narloch, P.H.: A review of technique for on-line control of parameters in swarm intelligence and evolutionary computation algorithms. Int. J. Bio-Inspir. Comput. (IJBIC) (2019, accepted for publication)Google Scholar
  19. 19.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-31306-0zbMATHCrossRefGoogle Scholar
  20. 20.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  21. 21.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791. IEEE (2005)Google Scholar
  22. 22.
    Silva, R.S., Parpinelli, R.S.: A multistage simulated annealing for protein structure prediction using Rosetta. In: Anais do Computer on the Beach, pp. 850–859 (2018)Google Scholar
  23. 23.
    Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Walsh, G.: Proteins: Biochemistry and Biotechnology. Wiley, Hoboken (2002)Google Scholar
  25. 25.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)CrossRefGoogle Scholar
  26. 26.
    Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26(7), 889–895 (2010)CrossRefGoogle Scholar
  27. 27.
    Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31(13), 3370–3374 (2003)CrossRefGoogle Scholar
  28. 28.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  29. 29.
    Zhang, X., et al.: 3D protein structure prediction with genetic tabu search algorithm. BMC Syst. Biol. 4(1), S6 (2010)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins: Struct. Funct. Bioinf. 57(4), 702–710 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate Program in Applied ComputingSanta Catarina State UniversityJoinvilleBrazil

Personalised recommendations