Advertisement

Molecular-Plasmon Nanostructures for Biomedical Application

  • Alexey PovolotskiyEmail author
  • Marina Evdokimova
  • Alexander Konev
  • Ilya Kolesnikov
  • Anastasia Povolotckaia
  • Alexey Kalinichev
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

The development of modern nanotechnology opens new opportunities in the design of hybrid structures. This review is devoted to the general view on hybrids, which are based on metal nanoparticles and molecules. Functional properties of nanostructures that have a biomedical application are presented, including singlet oxygen generation for photodynamic therapy, photo-induced heating for photothermal therapy, photo-induced reactions for chemotherapy, luminescent thermometry and surface enhanced Raman scattering for drug delivery control etc. The association of nanostructures into hybrids allows to combine their functional properties and create universal preparations for controlled complex therapy.

References

  1. 1.
    Y. Wang, F. Wang, Y. Shen et al., Tumor-specific disintegratable nanohybrids containing ultrasmall inorganic nanoparticles: from design and improved properties to cancer applications. Mater. Horizons 5, 184–205 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Zhu, P. Cheng, P. Chen, K. Pu, Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 6, 746–765 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Sreejith, T.T.M. Huong, P. Borah, Y. Zhao, Organic–inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging. Sci. Bull. 60, 665–678 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Zhou, P. Wang, C. Wang et al., Versatile core-shell nanoparticle@metal–organic framework nanohybrids: exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 9, 6951–6960 (2015).  https://doi.org/10.1021/acsnano.5b01138CrossRefGoogle Scholar
  5. 5.
    J. Song, X. Yang, O. Jacobson et al., Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv. Mater. 27, 4910–4917 (2015)CrossRefGoogle Scholar
  6. 6.
    J.-Y. Zeng, M.-K. Zhang, M.-Y. Peng et al., Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 28, 1705451 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Jing, X. Liang, X. Li et al., Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer. Theranostics 4, 858–871 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Yang, J. Xu, G. Yang et al., Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. Chem. Eng. J. 344, 363–374 (2018)CrossRefGoogle Scholar
  9. 9.
    Q. Mu, G. Jiang, L. Chen et al., Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 114, 7740–7781 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Khandelia, A. Jaiswal, S.S. Ghosh, A. Chattopadhyay, Gold nanoparticle-protein agglomerates as versatile nanocarriers for drug delivery. Small 9, 3494–3505 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Ma, J. Huang, S. Song et al., Cancer-targeted nanotheranostics: recent advances and perspectives. Small 12, 4936–4954 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Yi, S. Zhang, K.T. Webb, Z. Nie, Anisotropic self-assembly of hairy inorganic nanoparticles. Acc. Chem. Res. 50, 12–21 (2017)CrossRefGoogle Scholar
  13. 13.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Kodiha, E. Hutter, S. Boridy et al., Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell. Mol. Life Sci. 71, 4259–4273 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Mishra, S. Ray, S. Sinha et al., Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem. Eng. J. 105, 264–272 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Kang, X. Guo, W. An et al., Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci. Rep. 7, 42069 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Mackey, M.R.K. Ali, L.A. Austin et al., The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J. Phys. Chem. B 118, 1319–1326 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Ahmadi, S. Arami, Potential applications of nanoshells in biomedical sciences. J. Drug Target. 22, 175–190 (2014)CrossRefGoogle Scholar
  19. 19.
    M.E. Khosroshahi, Z. Hassannejad, M. Firouzi, A.R. Arshi, Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: an in vitro study. Lasers Med. Sci. 30, 1913–1922 (2015)CrossRefGoogle Scholar
  20. 20.
    S.E. Skrabalak, J. Chen, L. Au et al., Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)CrossRefGoogle Scholar
  21. 21.
    C.M. Cobley, L. Au, J. Chen, Y. Xia, Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv. 7, 577–587 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Jaque, L. Martínez Maestro, B. del Rosal et al., Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    H. Shi, X. Ye, X. He et al., Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy. Nanoscale 6, 8754 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J. Lin, Z. Huang, H. Wu et al., Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10, 2006–2020 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Foldbjerg, E.S. Irving, Y. Hayashi et al., Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol. Sci. 130, 145–157 (2012)CrossRefGoogle Scholar
  26. 26.
    P. AshaRani, S. Sethu, H. Lim et al., Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3, 2 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Chen, S. Gao, W. Ge et al., One-step rapid synthesis of fluorescent platinum nanoclusters for cellular imaging and photothermal treatment. RSC Adv. 4, 40141 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Chen, C. Zhao, J. Ye et al., In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 7, 18163–18169 (2015)CrossRefGoogle Scholar
  29. 29.
    T.C. Johnstone, G.Y. Park, S.J. Lippard, Understanding and improving platinum anti-cancer drugs—phenanthriplatin. Anticancer Res. 34, 471–476 (2014)Google Scholar
  30. 30.
    Z.S. Silva, S.K. Bussadori, K.P.S. Fernandes et al., Animal models for photodynamic therapy (PDT). Biosci. Rep. 35, e00265–e00265 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Calixto, J. Bernegossi, L. de Freitas et al., Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21, 342 (2016).  https://doi.org/10.3390/molecules21030342CrossRefGoogle Scholar
  32. 32.
    X. Li, S. Kolemen, J. Yoon, E.U. Akkaya, Activatable photosensitizers: agents for selective photodynamic therapy. Adv. Funct. Mater. 27, 1604053 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Li, B.-D. Zheng, X.-H. Peng et al., Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord. Chem. Rev. (2017)Google Scholar
  34. 34.
    H. Eshghi, A. Sazgarnia, M. Rahimizadeh et al., Protoporphyrin IX–gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagnosis Photodyn. Ther. 10, 304–312 (2013)CrossRefGoogle Scholar
  35. 35.
    S.C. Hayden, L.A. Austin, R.D. Near et al., Plasmonic enhancement of photodynamic cancer therapy. J. Photochem. Photobiol. A Chem. 269, 34–41 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Záruba, J. Králová, P. Řezanka et al., Modified porphyrin–brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem. 8, 3202 (2010)CrossRefGoogle Scholar
  37. 37.
    O. Penon, T. Patiño, L. Barrios et al., A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity. ChemistryOpen 4, 127–136 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Guo, M. Kumar, P. Zhang, Nanoparticle-based photosensitizers under CW infrared excitation. Chem. Mater. 19, 6071–6072 (2007)CrossRefGoogle Scholar
  39. 39.
    K. Knop, A.-F. Mingotaud, N. El-Akra et al., Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-ε-caprolactone) micelles for photodynamic therapy. Photochem. Photobiol. Sci. 8, 396 (2009)CrossRefGoogle Scholar
  40. 40.
    Y. Hu, Y. Yang, H. Wang, H. Du, Synergistic integration of layer-by-layer assembly of photosensitizer and gold nanorings for enhanced photodynamic therapy in the near infrared. ACS Nano 9, 8744–8754 (2015)CrossRefGoogle Scholar
  41. 41.
    T.G. Shutava, S.S. Balkundi, P. Vangala et al., Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3, 1877–1885 (2009)CrossRefGoogle Scholar
  42. 42.
    Z. Poon, D. Chang, X. Zhao, P.T. Hammond, Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5, 4284–4292 (2011)CrossRefGoogle Scholar
  43. 43.
    Z. Sheng, D. Hu, M. Zheng et al., Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8, 12310–12322 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Wang, P. Huang, L. Nie et al., Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055–3061 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Kumar, S. Kumar, W.-K. Rhim et al., Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures. J. Am. Chem. Soc. 136, 16317–16325 (2014)CrossRefGoogle Scholar
  46. 46.
    M.E. Alea-Reyes, J. Soriano, I. Mora-Espí et al., Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy. Colloids Surf. B Biointerfaces 158, 602–609 (2017)CrossRefGoogle Scholar
  47. 47.
    O. Penon, M.J. Marín, D.A. Russell, L. Pérez-García, Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J. Colloid Interface Sci. 496, 100–110 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    H.S. Han, K.Y. Choi, H. Lee et al., Gold-nanoclustered hyaluronan nano-assemblies for photothermally maneuvered photodynamic tumor ablation. ACS Nano 10, 10858–10868 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Zheng, Y. Yuan, Y. Chai, R. Yuan, l-cysteine induced manganese porphyrin electrocatalytic amplification with 3D DNA-Au@Pt nanoparticles as nanocarriers for sensitive electrochemical aptasensor. Biosens. Bioelectron. 79, 86–91 (2016)CrossRefGoogle Scholar
  50. 50.
    K.S. Lokesh, A. Shambhulinga, N. Manjunatha et al., Porphyrin macrocycle-stabilized gold and silver nanoparticles and their application in catalysis of hydrogen peroxide. Dye Pigment 120, 155–160 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Zeng, W. Yang, D. Shi et al., Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomater. Sci. Eng. 4, 963–972 (2018)CrossRefGoogle Scholar
  52. 52.
    J. Lin, S. Wang, P. Huang et al., Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013)CrossRefGoogle Scholar
  53. 53.
    Z. Wang, S. Sau, H.O. Alsaab, A,K, Iyer, CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomed. Nanotechnol. Biol. Med. (2018)Google Scholar
  54. 54.
    X. Chen, W. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)CrossRefGoogle Scholar
  55. 55.
    C. Ding, Z. Li, A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C 76, 1440–1453 (2017)MathSciNetCrossRefGoogle Scholar
  56. 56.
    S. Chen, Q. Lei, W.-X. Qiu et al., Mitochondria-targeting “nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 117, 92–104 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    J. Nam, S. Son, L.J. Ochyl et al., Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    M.-Y. Lee, J.-A. Yang, H.S. Jung et al., Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 6, 9522–9531 (2012)CrossRefGoogle Scholar
  59. 59.
    Z. Wang, Z. Chen, Z. Liu et al., A multi-stimuli responsive gold nanocage–hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 35, 9678–9688 (2014)CrossRefGoogle Scholar
  60. 60.
    W. Chen, S. Zhang, Y. Yu et al., Structural-engineering rationales of gold nanoparticles for cancer theranostics. Adv. Mater. 28, 8567–8585 (2016)CrossRefGoogle Scholar
  61. 61.
    D. Luo, K.A. Carter, D. Miranda, J.F. Lovell, Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci. 4, 1600106 (2017)CrossRefGoogle Scholar
  62. 62.
    J. Park, J. Park, E.J. Ju et al., Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J. Control Release 207, 77–85 (2015)CrossRefGoogle Scholar
  63. 63.
    J.B. Weaver, Hot nanoparticles light up cancer. Nat. Nanotechnol. 5, 630–631 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    E.F.J. Ring, The historical development of temperature measurement in medicine. Infrared Phys. Technol. 49, 297–301 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    P.R.N. Childs, J.R. Greenwood, C.A. Long, Review of temperature measurement. Rev. Sci. Instrum. 71, 2959–2978 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    L. Michalski, K. Eckersdorf, J. Kucharski, J. McGhee, Temperature Measurement, 2nd ed. (Wiley, New York, 2001)Google Scholar
  67. 67.
    S. Maekawa, T. Tohyama, S.E. Barnes et al., Physics of Transition Metal Oxides (Springer, Berlin, 2004)CrossRefGoogle Scholar
  68. 68.
    N.A.N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)Google Scholar
  69. 69.
    M. Tabib-Azar, Optical temperature sensors, in Integrated Optics, Microstructures, and Sensors (Springer, Berlin, 1995), pp. 285–313Google Scholar
  70. 70.
    C.D.S. Brites, P.P. Lima, N.J.O. Silva et al., Thermometry at the nanoscale. Nanoscale 4, 4799 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    G.F. Imbusch, B. Henderson, Optical Spectroscopy of Inorganic Solids (Oxford Science Publications, London, 2006)Google Scholar
  72. 72.
    D. Jaque, F. Vetrone, Luminescence nanothermometry. Nanoscale 4, 4301 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    M. Engeser, L. Fabbrizzi, M. Licchelli, D. Sacchi, A fluorescent molecular thermometer based on the nickel(II) high-spin/low-spin interconversion. Chem. Commun. 1191–1192 (1999)Google Scholar
  74. 74.
    R. Samy, T. Glawdel, C.L. Ren, Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B. Anal. Chem. 80, 369–375 (2008)CrossRefGoogle Scholar
  75. 75.
    V.M. Chauhan, R.H. Hopper, S.Z. Ali et al., Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate. Sens. Actuators B Chem. 192, 126–133 (2014)CrossRefGoogle Scholar
  76. 76.
    D. Ross, M. Gaitan, L.E. Locascio, Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73, 4117–4123 (2001)CrossRefGoogle Scholar
  77. 77.
    F.-L. Mi, Synthesis and characterization of a novel chitosan–gelatin bioconjugate with fluorescence emission. Biomacromol 6, 975–987 (2005)CrossRefGoogle Scholar
  78. 78.
    K. Miyata, Y. Konno, T. Nakanishi et al., Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew Chem. Int. Ed. 52, 6413–6416 (2013)CrossRefGoogle Scholar
  79. 79.
    J.M. Lupton, A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin. Appl. Phys. Lett. 81, 2478–2480 (2002)ADSCrossRefGoogle Scholar
  80. 80.
    D. Cauzzi, R. Pattacini, M. Delferro et al., Temperature-dependent fluorescence of Cu5 metal clusters: a molecular thermometer. Angew Chem. Int. Ed. 51, 9662–9665 (2012)CrossRefGoogle Scholar
  81. 81.
    S. Otto, N. Scholz, T. Behnke et al., Thermo-chromium: a contactless optical molecular thermometer. Chem. A Eur. J. 23, 12131–12135 (2017)CrossRefGoogle Scholar
  82. 82.
    J. Feng, K. Tian, D. Hu et al., A Triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew Chem. Int Ed. 50, 8072–8076 (2011)CrossRefGoogle Scholar
  83. 83.
    B. Huitorel, Q. Benito, A. Fargues et al., Mechanochromic luminescence and liquid crystallinity of molecular copper clusters. Chem. Mater. 28, 8190–8200 (2016)CrossRefGoogle Scholar
  84. 84.
    F. Parmeggiani, A. Sacchetti, Preparation and luminescence thermochromism of tetranuclear copper(I)–pyridine–iodide clusters. J. Chem. Educ. 89, 946–949 (2012)CrossRefGoogle Scholar
  85. 85.
    A. Yadav, A.K. Srivastava, A. Balamurugan, R. Boomishankar, A cationic copper(I) iodide cluster MOF exhibiting unusual ligand assisted thermochromism. Dalt. Trans. 43, 8166–8169 (2014)CrossRefGoogle Scholar
  86. 86.
    G. Baffou, M.P. Kreuzer, F. Kulzer, R. Quidant, Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    J.S. Donner, S.A. Thompson, M.P. Kreuzer et al., Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin et al., YVO4:Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range. Sci. Rep. 7, 18002 (2017)ADSCrossRefGoogle Scholar
  89. 89.
    I.E. Kolesnikov, E.V. Golyeva, A.A. Kalinichev et al., Nd3+ single doped YVO 4 nanoparticles for sub-tissue heating and thermal sensing in the second biological window. Sens. Actuators B Chem. 243, 338–345 (2017)CrossRefGoogle Scholar
  90. 90.
    A. Benayas, E. Escuder, D. Jaque, High-resolution confocal fluorescence thermal imaging of tightly pumped microchip Nd:YAG laser ceramics. Appl. Phys. B 107, 697–701 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    A.A. Kaminskii, Laser crystals and ceramics: recent advances. Laser Photon. Rev. 1, 93–177 (2007)ADSCrossRefGoogle Scholar
  92. 92.
    D. Moreau, C. Lefort, R. Burke et al., Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields. Biomed. Opt. Express 6, 4105 (2015)CrossRefGoogle Scholar
  93. 93.
    T. Karstens, K. Kobs, Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem. 84, 1871–1872 (1980)CrossRefGoogle Scholar
  94. 94.
    D.A. Mendels, E.M. Graham, S. Magennis et al., Quantitative comparison of thermal and solutal transport in a T-mixer by FLIM and CFD. Microfluid. Nanofluid. 5, 603–617 (2008)CrossRefGoogle Scholar
  95. 95.
    L.-N. Sun, J. Yu, H. Peng et al., Temperature-sensitive luminescent nanoparticles and films based on a terbium (III) complex probe. J. Phys. Chem. C 114, 12642–12648 (2010)CrossRefGoogle Scholar
  96. 96.
    C.D.S. Brites, P.P. Lima, N.J.O. Silva et al., A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 22, 4499–4504 (2010)CrossRefGoogle Scholar
  97. 97.
    J.-H. Wang, M. Li, J. Zheng et al., A dual-emitting Cu 6-Cu 2-Cu 6 cluster as a self-calibrated, wide-range luminescent molecular thermometer. Chem. Commun. 50, 9115–9118 (2014)CrossRefGoogle Scholar
  98. 98.
    X. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834 (2013)CrossRefGoogle Scholar
  99. 99.
    H. Zhou, M. Sharma, O. Berezin et al., Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17, 27–36 (2016)CrossRefGoogle Scholar
  100. 100.
    M. Schäferling, The art of fluorescence imaging with chemical sensors. Angew Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
  101. 101.
    C. Nellaker, U. Wallgren, H. Karlsson, Molecular beacon-based temperature control and automated analyses for improved resolution of melting temperature analysis using SYBR I green chemistry. Clin. Chem. 53, 98–103 (2006)CrossRefGoogle Scholar
  102. 102.
    G. Ke, C. Wang, Y. Ge et al.,  l-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J. Am. Chem. Soc. 134, 18908–18911 (2012)CrossRefGoogle Scholar
  103. 103.
    S. Ebrahimi, Y. Akhlaghi, M. Kompany-Zareh, Å. Rinnan, Nucleic acid based fluorescent nanothermometers. ACS Nano 8, 10372–10382 (2014)CrossRefGoogle Scholar
  104. 104.
    Z. Fidan, A. Wende, U. Resch-Genger, Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Anal. Bioanal. Chem. 409, 1519–1529 (2017)CrossRefGoogle Scholar
  105. 105.
    E. Darrigues, V. Dantuluri, Z.A. Nima et al., Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 2: treatment. Drug Metab. Rev. 49, 253–283 (2017)CrossRefGoogle Scholar
  106. 106.
    Y. Wang, B.B. Newell, J. Irudayaraj, Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 8, 751–759 (2012)CrossRefGoogle Scholar
  107. 107.
    M.K. Hossain, H.-Y. Cho, K.-J. Kim, J.-W. Choi, In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 71, 300–305 (2015)CrossRefGoogle Scholar
  108. 108.
    C. Peters, S. Brown, Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 35, e00225–e00225 (2015)CrossRefGoogle Scholar
  109. 109.
    S. Nussbaumer, P. Bonnabry, J.-L. Veuthey, S. Fleury-Souverain, Analysis of anticancer drugs: a review. Talanta 85, 2265–2289 (2011)CrossRefGoogle Scholar
  110. 110.
    H.-W. Kao, Y.-Y. Lin, C.-C. Chen et al., Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology 25, 295102 (2014)CrossRefGoogle Scholar
  111. 111.
    J. Conde, C. Bao, D. Cui et al., Antibody–drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J. Control Release 183, 87–93 (2014)CrossRefGoogle Scholar
  112. 112.
    J. Feng, L. Chen, Y. Xia et al., Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater. Sci. Eng. 3, 608–618 (2017)CrossRefGoogle Scholar
  113. 113.
    J. Song, L. Pu, J. Zhou et al., Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013)CrossRefGoogle Scholar
  114. 114.
    A.M. Fales, H. Yuan, T. Vo-Dinh, Cell-penetrating peptide enhanced intracellular raman imaging and photodynamic therapy. Mol. Pharm. 10, 2291–2298 (2013)CrossRefGoogle Scholar
  115. 115.
    A. Farhadi, Á. Roxin, B.C. Wilson, G. Zheng, Nano-enabled SERS reporting photosensitizers. Theranostics 5, 469–476 (2015)CrossRefGoogle Scholar
  116. 116.
    L. Zhao, T.-H. Kim, H.-W. Kim et al., Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater. 20, 155–164 (2015)CrossRefGoogle Scholar
  117. 117.
    C. Pais-Silva, D. de Melo-Diogo, I.J. Correia, IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm. 113, 108–117 (2017)CrossRefGoogle Scholar
  118. 118.
    S. Harmsen, M.A. Wall, R. Huang, M.F. Kircher, Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12, 1400–1414 (2017)CrossRefGoogle Scholar
  119. 119.
    A. Yuan, J. Wu, X. Tang et al., Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102, 6–28 (2013)CrossRefGoogle Scholar
  120. 120.
    C.G. Alves, R. Lima-Sousa, D. de Melo-Diogo et al., IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 542, 164–175 (2018)CrossRefGoogle Scholar
  121. 121.
    T. Nagy-Simon, M. Potara, A.-M. Craciun et al., IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging. J. Colloid Interface Sci. 517, 239–250 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey Povolotskiy
    • 1
    Email author
  • Marina Evdokimova
    • 1
  • Alexander Konev
    • 1
  • Ilya Kolesnikov
    • 1
  • Anastasia Povolotckaia
    • 1
  • Alexey Kalinichev
    • 1
  1. 1.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations