Advertisement

Optical Control of G Protein-Coupled Receptor Activities in Living Cells

  • Hideaki Yoshimura
  • Takeaki OzawaEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

Membrane receptors transmit external signals into cells in response to extracellular stimuli and their activities are controlled spatiotemporally. In recent years, it has become possible to control activity of a target membrane receptor by external light using a photoreceptor protein. It forms oligomers or interacts specifically with its binding partners after light absorption. Controlling receptor activities by external light is now a powerful approach to elucidating the role of receptor activities and its dynamics in various life phenomena. In this review, we describe a new technology of optically controllable receptor using a photoreceptor protein, CRY2, and its application to the interaction of GPCR with β-arrestin in living cells.

Notes

Acknowledgements

This work was supported by CREST (JPMJCR1752 to T.O.) from Japan Science and Technology (JST) and the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research (S) 26220805 to T.O.).

References

  1. 1.
    E.N. Harvey (1916) The Mechanism of light production in animals. Science (New York, NY) 44 (1128), 208–209.  https://doi.org/10.1126/science.44.1128.208ADSCrossRefGoogle Scholar
  2. 2.
    T. Ozawa, H. Yoshimura, S.B. Kim, Advances in fluorescence and bioluminescence imaging. Anal. Chem. 85(2), 590–609 (2013).  https://doi.org/10.1021/ac3031724CrossRefGoogle Scholar
  3. 3.
    O. Shimomura, F.H. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cellular Comparat. Physiol. 59, 223–239 (1962)CrossRefGoogle Scholar
  4. 4.
    J.R. Enterina, L. Wu, R.E. Campbell, Emerging fluorescent protein technologies. Curr. Opin. Chem. Biol. 27, 10–17 (2015).  https://doi.org/10.1016/j.cbpa.2015.05.001CrossRefGoogle Scholar
  5. 5.
    K. Deisseroth, G. Feng, A.K. Majewska, G. Miesenbock, A. Ting, M.J. Schnitzer, Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. Off. J. Soc. Neurosci. 26(41), 10380–10386 (2006).  https://doi.org/10.1523/jneurosci.3863-06.2006CrossRefGoogle Scholar
  6. 6.
    G. Aston-Jones, K. Deisseroth, Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 1–5 (2013).  https://doi.org/10.1016/j.brainres.2013.01.026CrossRefGoogle Scholar
  7. 7.
    M. Endo, T. Ozawa, Strategies for development of optogenetic systems and their applications. J. Photochem. Photobiol. C 30, 10–23 (2017).  https://doi.org/10.1016/j.jphotochemrev.2016.10.003CrossRefGoogle Scholar
  8. 8.
    L.M. Luttrell, Transmembrane signaling by G protein-coupled receptors. Methods Mol. Biol. (Clifton, NJ) 332, 3–49 (2006).  https://doi.org/10.1385/1-59745-048-0:1CrossRefGoogle Scholar
  9. 9.
    A. Manglik, A.C. Kruse, Structural basis for G protein-coupled receptor activation. Biochemistry 56(42), 5628–5634 (2017).  https://doi.org/10.1021/acs.biochem.7b00747CrossRefGoogle Scholar
  10. 10.
    L.B. Motta-Mena, A. Reade, M.J. Mallory, S. Glantz, O.D. Weiner, K.W. Lynch, K.H. Gardner, An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10(3), 196–202 (2014).  https://doi.org/10.1038/nchembio.1430CrossRefGoogle Scholar
  11. 11.
    K.Y. Chang, D. Woo, H. Jung, S. Lee, S. Kim, J. Won, T. Kyung, H. Park, N. Kim, H.W. Yang, J.W. Park, E.M. Hwang, D. Kim, W.D. Heo, Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat. Commun. 5, 4057.  https://doi.org/10.1038/ncomms5057
  12. 12.
    Endo M, Hattori M, Toriyabe H, Ohno H, Kamiguchi H, Iino Y, Ozawa T (2016) Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth. Scientific reports 6:23976.  https://doi.org/10.1038/srep23976
  13. 13.
    K. Aoki, Y. Kumagai, A. Sakurai, N. Komatsu, Y. Fujita, C. Shionyu, M. Matsuda, Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol. Cell 52(4), 529–540.  https://doi.org/10.1016/j.molcel.2013.09.015CrossRefGoogle Scholar
  14. 14.
    Y. Katsura, H. Kubota, K. Kunida, A. Kanno, S. Kuroda, T. Ozawa, An optogenetic system for interrogating the temporal dynamics of Akt. Scientif. Rep. 5, 14589 (2015).  https://doi.org/10.1038/srep14589
  15. 15.
    A. Musnier, B. Blanchot, E. Reiter, P. Crepieux, GPCR signalling to the translation machinery. Cell. Signal. 22(5), 707–716 (2010).  https://doi.org/10.1016/j.cellsig.2009.10.012CrossRefGoogle Scholar
  16. 16.
    J. Bockaert, J.P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18(7), 1723–1729 (1999).  https://doi.org/10.1093/emboj/18.7.1723CrossRefGoogle Scholar
  17. 17.
    Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE (2017) Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell 170 (3):457–469.e413.  https://doi.org/10.1016/j.cell.2017.07.002CrossRefGoogle Scholar
  18. 18.
    T.J. Cahill, 3rd, A.R. Thomsen, JT Tarrasch, B. Plouffe, A.H. Nguyen, F. Yang, L.Y. Huang, A.W. Kahsai, D.L. Bassoni, B.J. Gavino, J.E. Lamerdin, S. Triest, A.K. Shukla, B. Berger, J.T. Little, A. Antar, A. Blanc, C.X. Qu, X. Chen, K. Kawakami, A. Inoue, J. Aoki, J. Steyaert, J.P. Sun, M. Bouvier, G. Skiniotis, R.J. Lefkowitz, Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. USA 114(10), 2562–2567 (2017).  https://doi.org/10.1073/pnas.1701529114CrossRefGoogle Scholar
  19. 19.
    J. Zhang, L.S. Barak, K.E. Winkler, M.G. Caron, S.S. Ferguson, A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J. Biol. Chem. 272(43), 27005–27014 (1997)CrossRefGoogle Scholar
  20. 20.
    O. Takenouchi, H. Yoshimura, T. Ozawa, Unique roles of beta-arrestin in GPCR trafficking revealed by photoinducible dimerizers. Scientif. Rep. 8(1), 677 (2018).  https://doi.org/10.1038/s41598-017-19130-yADSCrossRefGoogle Scholar
  21. 21.
    M. Weitzman, K.M. Hahn, Optogenetic approaches to cell migration and beyond. Curr. Opin. Cell Biol. 30, 112–120 (2014).  https://doi.org/10.1016/j.ceb.2014.08.004CrossRefGoogle Scholar
  22. 22.
    M.J. Kennedy, R.M. Hughes, L.A. Peteya, J.W. Schwartz, M.D. Ehlers, C.L. Tucker, Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7(12), 973–975 (2010).  https://doi.org/10.1038/nmeth.1524CrossRefGoogle Scholar
  23. 23.
    S.K. Shenoy, A.S. Modi, A.K. Shukla, K. Xiao, M. Berthouze, S. Ahn, K.D. Wilkinson, W.E. Miller, R.J. Lefkowitz, Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl. Acad. Sci. USA 106(16), 6650–6655 (2009).  https://doi.org/10.1073/pnas.0901083106ADSCrossRefGoogle Scholar
  24. 24.
    R. Nygaard, Y. Zou, R.O. Dror, T.J. Mildorf, D.H. Arlow, A. Manglik, A.C. Pan, C.W. Liu, J.J. Fung, M.P. Bokoch, F.S. Thian, T.S. Kobilka, D.E. Shaw, L. Mueller, R.S. Prosser, B.K. Kobilka, The dynamic process of beta(2)-adrenergic receptor activation. Cell 152(3), 532–542 (2013).  https://doi.org/10.1016/j.cell.2013.01.008CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations