Optical Control of G Protein-Coupled Receptor Activities in Living Cells

  • Hideaki Yoshimura
  • Takeaki OzawaEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


Membrane receptors transmit external signals into cells in response to extracellular stimuli and their activities are controlled spatiotemporally. In recent years, it has become possible to control activity of a target membrane receptor by external light using a photoreceptor protein. It forms oligomers or interacts specifically with its binding partners after light absorption. Controlling receptor activities by external light is now a powerful approach to elucidating the role of receptor activities and its dynamics in various life phenomena. In this review, we describe a new technology of optically controllable receptor using a photoreceptor protein, CRY2, and its application to the interaction of GPCR with β-arrestin in living cells.



This work was supported by CREST (JPMJCR1752 to T.O.) from Japan Science and Technology (JST) and the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research (S) 26220805 to T.O.).


  1. 1.
    E.N. Harvey (1916) The Mechanism of light production in animals. Science (New York, NY) 44 (1128), 208–209. Scholar
  2. 2.
    T. Ozawa, H. Yoshimura, S.B. Kim, Advances in fluorescence and bioluminescence imaging. Anal. Chem. 85(2), 590–609 (2013). Scholar
  3. 3.
    O. Shimomura, F.H. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cellular Comparat. Physiol. 59, 223–239 (1962)CrossRefGoogle Scholar
  4. 4.
    J.R. Enterina, L. Wu, R.E. Campbell, Emerging fluorescent protein technologies. Curr. Opin. Chem. Biol. 27, 10–17 (2015). Scholar
  5. 5.
    K. Deisseroth, G. Feng, A.K. Majewska, G. Miesenbock, A. Ting, M.J. Schnitzer, Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. Off. J. Soc. Neurosci. 26(41), 10380–10386 (2006). Scholar
  6. 6.
    G. Aston-Jones, K. Deisseroth, Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 1–5 (2013). Scholar
  7. 7.
    M. Endo, T. Ozawa, Strategies for development of optogenetic systems and their applications. J. Photochem. Photobiol. C 30, 10–23 (2017). Scholar
  8. 8.
    L.M. Luttrell, Transmembrane signaling by G protein-coupled receptors. Methods Mol. Biol. (Clifton, NJ) 332, 3–49 (2006). Scholar
  9. 9.
    A. Manglik, A.C. Kruse, Structural basis for G protein-coupled receptor activation. Biochemistry 56(42), 5628–5634 (2017). Scholar
  10. 10.
    L.B. Motta-Mena, A. Reade, M.J. Mallory, S. Glantz, O.D. Weiner, K.W. Lynch, K.H. Gardner, An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10(3), 196–202 (2014). Scholar
  11. 11.
    K.Y. Chang, D. Woo, H. Jung, S. Lee, S. Kim, J. Won, T. Kyung, H. Park, N. Kim, H.W. Yang, J.W. Park, E.M. Hwang, D. Kim, W.D. Heo, Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat. Commun. 5, 4057.
  12. 12.
    Endo M, Hattori M, Toriyabe H, Ohno H, Kamiguchi H, Iino Y, Ozawa T (2016) Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth. Scientific reports 6:23976.
  13. 13.
    K. Aoki, Y. Kumagai, A. Sakurai, N. Komatsu, Y. Fujita, C. Shionyu, M. Matsuda, Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol. Cell 52(4), 529–540. Scholar
  14. 14.
    Y. Katsura, H. Kubota, K. Kunida, A. Kanno, S. Kuroda, T. Ozawa, An optogenetic system for interrogating the temporal dynamics of Akt. Scientif. Rep. 5, 14589 (2015).
  15. 15.
    A. Musnier, B. Blanchot, E. Reiter, P. Crepieux, GPCR signalling to the translation machinery. Cell. Signal. 22(5), 707–716 (2010). Scholar
  16. 16.
    J. Bockaert, J.P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18(7), 1723–1729 (1999). Scholar
  17. 17.
    Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE (2017) Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell 170 (3):457–469.e413. Scholar
  18. 18.
    T.J. Cahill, 3rd, A.R. Thomsen, JT Tarrasch, B. Plouffe, A.H. Nguyen, F. Yang, L.Y. Huang, A.W. Kahsai, D.L. Bassoni, B.J. Gavino, J.E. Lamerdin, S. Triest, A.K. Shukla, B. Berger, J.T. Little, A. Antar, A. Blanc, C.X. Qu, X. Chen, K. Kawakami, A. Inoue, J. Aoki, J. Steyaert, J.P. Sun, M. Bouvier, G. Skiniotis, R.J. Lefkowitz, Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. USA 114(10), 2562–2567 (2017). Scholar
  19. 19.
    J. Zhang, L.S. Barak, K.E. Winkler, M.G. Caron, S.S. Ferguson, A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J. Biol. Chem. 272(43), 27005–27014 (1997)CrossRefGoogle Scholar
  20. 20.
    O. Takenouchi, H. Yoshimura, T. Ozawa, Unique roles of beta-arrestin in GPCR trafficking revealed by photoinducible dimerizers. Scientif. Rep. 8(1), 677 (2018). Scholar
  21. 21.
    M. Weitzman, K.M. Hahn, Optogenetic approaches to cell migration and beyond. Curr. Opin. Cell Biol. 30, 112–120 (2014). Scholar
  22. 22.
    M.J. Kennedy, R.M. Hughes, L.A. Peteya, J.W. Schwartz, M.D. Ehlers, C.L. Tucker, Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7(12), 973–975 (2010). Scholar
  23. 23.
    S.K. Shenoy, A.S. Modi, A.K. Shukla, K. Xiao, M. Berthouze, S. Ahn, K.D. Wilkinson, W.E. Miller, R.J. Lefkowitz, Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl. Acad. Sci. USA 106(16), 6650–6655 (2009). Scholar
  24. 24.
    R. Nygaard, Y. Zou, R.O. Dror, T.J. Mildorf, D.H. Arlow, A. Manglik, A.C. Pan, C.W. Liu, J.J. Fung, M.P. Bokoch, F.S. Thian, T.S. Kobilka, D.E. Shaw, L. Mueller, R.S. Prosser, B.K. Kobilka, The dynamic process of beta(2)-adrenergic receptor activation. Cell 152(3), 532–542 (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations