Advertisement

Phosphorescence Lifetime Imaging (PLIM): State of the Art and Perspectives

  • Pavel S. Chelushkin
  • Sergey P. TunikEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

This chapter reviews the status and perspectives of phosphorescence lifetime imaging (PLIM), an advanced imaging strategy that relies on phosphorescence lifetime measuring as a function of some particular biological microenvironment parameters. PLIM should be regarded as a functional imaging technique, as opposite to various forms of “localization” techniques, because it provides not only information on distribution pattern of the probe but also determines its “status” (via lifetime reporting).

Notes

Acknowledgements

The authors greatly appreciate financial support from the Russian Science Foundation (grant 16-43-03003) and the organizing committee of the STEPS program for the support in publication of this review.

References

  1. 1.
    W. Becker, J. Microsc. 247, 119 (2012)CrossRefGoogle Scholar
  2. 2.
    M.Y. Berezin, S. Achilefu, Chem. Rev. 110, 2641 (2010)CrossRefGoogle Scholar
  3. 3.
    K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Chem. Rev. 118, 1770 (2018)CrossRefGoogle Scholar
  4. 4.
    E. Baggaley, J.A. Weinstein, J.A.G. Williams, Struct. Bond. 165, 205 (2015)CrossRefGoogle Scholar
  5. 5.
    L.M. Hirvonen, K. Suhling, Meas. Sci. Technol. 28 (2017)Google Scholar
  6. 6.
    S.S. Howard, A. Straub, N.G. Horton, D. Kobat, C. Xu, Nat. Photonics 7, 33 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Heidelberg, 2005)CrossRefGoogle Scholar
  8. 8.
    W. Becker, V. Shcheslavskiy, A. Rück, Adv. Exp. Med. Biol. 19–30, (2017)Google Scholar
  9. 9.
    M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, Proc. Natl. Acad. Sci. 104, 19494 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kalinina, J. Breymayer, P. Schäfer, E. Calzia, V. Shcheslavskiy, W. Becker, A. Rück, J. Biophotonics 9, 800 (2016)CrossRefGoogle Scholar
  11. 11.
    A.I. Solomatina, P.S. Chelushkin, D.V. Krupenya, I.S. Podkorytov, T.O. Artamonova, V.V. Sizov, A.S. Melnikov, V.V. Gurzhiy, E.I. Koshel, V.I. Shcheslavskiy, S.P. Tunik, Bioconjug. Chem. 28, 426 (2017)CrossRefGoogle Scholar
  12. 12.
    V. Shcheslavskiy, M. Shirmanova, V. Dudenkova, K. Lukyanov, A. Gavrina, A. Shumilova, E. Zagaynova, W. Becker, Opt. Lett. 43 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    A.I. Solomatina, S.-H. Su, M.M. Lukina, V.V. Dudenkova, V.I. Shcheslavskiy, C.-H. Wu, P.S. Chelushkin, P.-T. Chou, I.O. Koshevoy, S.P. Tunik, RSC Adv. 8, 17224 (2018)CrossRefGoogle Scholar
  14. 14.
    R.I. Dmitriev (ed.), Multi-Parametric Live Cell Microscopy of 3D Tissue Models (Springer International Publishing, Cham, 2017)Google Scholar
  15. 15.
    T.V. Esipova, A. Karagodov, J. Miller, D.F. Wilson, T.M. Busch, S.A. Vinogradov, Anal. Chem. 83, 8756 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Fercher, S.M. Borisov, A.V. Zhdanov, I. Klimant, D.B. Papkovsky, ACS Nano 5499–5508 (2011)CrossRefGoogle Scholar
  17. 17.
    D.E. Owens, N.A. Peppas, Int. J. Pharm. 307, 93 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Dufort, L. Sancey, J.L. Coll, Adv. Drug Deliv. Rev. 64, 179 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Mol. Pharm. 505–515 (2008)Google Scholar
  20. 20.
    R.I. Dmitriev, S.M. Borisov, H. Düssmann, S. Sun, B.J. Müller, J. Prehn, V.P. Baklaushev, I. Klimant, D.B. Papkovsky, ACS Nano 9, 5275 (2015)CrossRefGoogle Scholar
  21. 21.
    V. Ntziachristos, Nat. Methods 7, 603 (2010)CrossRefGoogle Scholar
  22. 22.
    I. Dunphy, S.A. Vinogradov, D.F. Wilson, Anal. Biochem. 310, 191 (2002)CrossRefGoogle Scholar
  23. 23.
    O.S. Finikova, A.Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R.M. Hochstrasser, S.A. Vinogradov, Chem. Phys. Chem. 9, 1673 (2008)CrossRefGoogle Scholar
  24. 24.
    E. Roussakis, J.A. Spencer, C.P. Lin, S.A. Vinogradov, Anal. Chem. 86, 5937 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Milton Harris, R.B. Chess, Nat. Rev. Drug Discov. 2, 214 (2003)Google Scholar
  26. 26.
    V. Tsytsarev, H. Arakawa, S. Borisov, E. Pumbo, R.S. Erzurumlu, D.B. Papkovsky, J. Neurosci. Methods 216, 146 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Helmchen, W. Denk, Nat. Methods 2, 932 (2005)CrossRefGoogle Scholar
  28. 28.
    J.A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J.M. Runnels, W. Zaher, L.J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Côté, S.A. Vinogradov, D.T. Scadden, C.P. Lin, Nature 508, 269 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    S. Sakadžić, E. Roussakis, M.A. Yaseen, E.T. Mandeville, V.J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E.H. Lo, S.A. Vinogradov, D.A. Boas, Nat. Methods 7, 755 (2010)CrossRefGoogle Scholar
  30. 30.
    A.V. Kondrashina, R.I. Dmitriev, S.M. Borisov, I. Klimant, I. O’Brien, Y.M. Nolan, A.V. Zhdanov, D.B. Papkovsky, Adv. Funct. Mater. 22, 4931 (2012)CrossRefGoogle Scholar
  31. 31.
    R.I. Dmitriev, S.M. Borisov, A.V. Kondrashina, J.M.P. Pakan, U. Anilkumar, J.H.M. Prehn, A.V. Zhdanov, K.W. McDermott, I. Klimant, D.B. Papkovsky, Cell. Mol. Life Sci. 72, 367 (2015)CrossRefGoogle Scholar
  32. 32.
    W. Lv, T. Yang, Q. Yu, Q. Zhao, K.Y. Zhang, H. Liang, S. Liu, F. Li, W. Huang, Adv. Sci. 2 (2015)Google Scholar
  33. 33.
    J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, J. Shi, J. Am. Chem. Soc. 136, 9701 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Misgeld, M. Kerschensteiner, Nat. Rev. Neurosci. 7, 449 (2006)CrossRefGoogle Scholar
  35. 35.
    Y. Takei, S. Arai, A. Murata, M. Takabayashi, K. Oyama, S. Ishiwata, S. Takeoka, M. Suzuki, ACS Nano 8, 198 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Peng, M.I.J. Stich, J. Yu, L.N. Sun, L.H. Fischer, O.S. Wolfbeis, Adv. Mater. 22, 716 (2010)CrossRefGoogle Scholar
  37. 37.
    Q. Li, Y. He, J. Chang, L. Wang, H. Chen, Y.W. Tan, H. Wang, Z. Shao, J. Am. Chem. Soc. 135, 14924 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Shang, F. Stockmar, N. Azadfar, G.U. Nienhaus, Angew. Chemie Int. Ed. 52, 11154 (2013)CrossRefGoogle Scholar
  39. 39.
    A.T. Bui, A. Grichine, A. Duperray, P. Lidon, F. Riobé, C. Andraud, O. Maury, J. Am. Chem. Soc. 139, 7693 (2017)CrossRefGoogle Scholar
  40. 40.
    L. He, C.P. Tan, R.R. Ye, Y.Z. Zhao, Y.H. Liu, Q. Zhao, L.N. Ji, Z.W. Mao, Angew. Chemie Int. Ed. 53, 12137 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Chen, K.Y. Zhang, X. Tong, Y. Liu, C. Hu, S. Liu, Q. Yu, Q. Zhao, W. Huang, Adv. Funct. Mater. 26, 4386 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Wang, J. Xue, Z. Yan, S. Zhang, J. Qiao, X. Zhang, Angew. Chemie Int. Ed. 56, 14928 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Wang, L. Sheng, H. Zhao, X. Zhang, S. Zhang, Talanta 162, 641 (2017)CrossRefGoogle Scholar
  44. 44.
    E. Baggaley, M.R. Gill, N.H. Green, D. Turton, I.V. Sazanovich, S.W. Botchway, C. Smythe, J.W. Haycock, J.A. Weinstein, J.A. Thomas, Angew. Chemie Int. Ed. 53, 3367 (2014)CrossRefGoogle Scholar
  45. 45.
    F.R. Svensson, M. Abrahamsson, N. Strömberg, A.G. Ewing, P. Lincoln, J. Phys. Chem. Lett. 2, 397 (2011)CrossRefGoogle Scholar
  46. 46.
    E.I. Koshel, P.S. Chelushkin, A.S. Melnikov, P.Y. Serdobintsev, A.Y. Stolbovaia, A.F. Saifitdinova, V.I. Shcheslavskiy, O. Chernyavskiy, E.R. Gaginskaya, I.O. Koshevoy, S.P. Tunik, J. Photochem. Photobiol. A Chem. 332, 122 (2017)CrossRefGoogle Scholar
  47. 47.
    J. Jenkins, S.M. Borisov, D.B. Papkovsky, R.I. Dmitriev, Anal. Chem. 88, 10566 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Zhang, Y. Fu, J.R. Lakowicz, J. Phys. Chem. C 115, 7255 (2011)CrossRefGoogle Scholar
  49. 49.
    E. Baggaley, D.K. Cao, D. Sykes, S.W. Botchway, J.A. Weinstein, M.D. Ward, Chem. A Eur. J. 20, 8898 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Jana, E. Baggaley, A. Amoroso, M.D. Ward, Chem. Commun. 51, 8833 (2015)CrossRefGoogle Scholar
  51. 51.
    A. Jana, B.J. Crowston, J.R. Shewring, L.K. McKenzie, H.E. Bryant, S.W. Botchway, A.D. Ward, A.J. Amoroso, E. Baggaley, M.D. Ward, Inorg. Chem. 55, 5623 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry, St. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations