Interaction of Laser Radiation with Explosives, Applications and Perspectives

  • Yuriy TverjanovichEmail author
  • Andrey Tverjanovich
  • Anatoliy Averyanov
  • Maksim Panov
  • Mikhail Ilyshin
  • Mikhail Balmakov
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


This chapter provides a brief overview of the main directions in research and application of the interaction of laser radiation with explosives. Historically the first application of such interaction based on thermal initiation of explosives is briefly characterized. The main methods of remote detection of explosives using laser radiation are listed. Particular attention is paid to the areas of research that have been recently formed such as spectral selective resonance interaction of laser radiation with explosives and explosives modified by nano-additives. It was noted that depending on the choice of the optical absorption band of the explosives, its excitation can lead either to the effective activation of an explosive or to its decomposition, which is not accompanied by a significant thermal effect. The latter case can be used for remote detection of the explosives and, partly, for passivation of their surface. Finally, it was demonstrated that the absorbing and refractive light nano-additives are able to reduce the threshold intensity of initiation of explosives by laser radiation, while keeping the resistance of explosives to impact or thermal effects that provides the safety conditions of working with them.



This work was supported by the Russian Foundation for Basic Research, project no. 16-29-01056-ofi_m. Measurements were partly made at the resource center of St. Petersburg State University “Optical and Laser Methods for Analysis of Substances”.


  1. 1.
    M.J. Gifford, W.G. Proud, J.E. Field, Development of a method for qualification of hot-spots. Thermochim. Acta 384, 285–290 (2002)CrossRefGoogle Scholar
  2. 2.
    Y.-C. Liau et al., Laser-induced ignition of RDX monopropellant. Combust. Flame 126, 1680–1698 (2001)CrossRefGoogle Scholar
  3. 3.
    J.M. McAfee, The deflagration to detonation transition, in Shock Wave Science and Technology Reference Library. 5: Non-Shock Initiation of Explosives, ed. by B.W. Asay (Springer, Berlin, 2010), pp. 483–535Google Scholar
  4. 4.
    M.D. Furnish, N.N. Thadhani, Y. Horie, Am. Inst. Phys. (Melville, NY) 878–881 (2002)Google Scholar
  5. 5.
    M.S. Abdulazeem et al., Int. J. Therm. Sci. 50, 2117–2121 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Ruiqi, W. Lizhi, Z. Wei, Z. Haonan, Laser ablation of energetic materials, in Laser Ablation—From Fundamentals to Applications.
  7. 7.
    L.A. Skvortsov, Laser methods for detection of the explosives traces on the surfaces of distant objects. Quantum Electron. 42(1) (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L.A. Skvortsov, E.M. Maksimov, Quantum Electron. 40(7), 565 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. Kremers, L. Radziemsky, Laser-Indused Breakdown Spectroscopy (Technosphere, Moscow, 2009)Google Scholar
  10. 10.
    A. Popov, T. Labutin, N. Zorov, Mosc. Univ. Chem. Bull. 50(6), 453 (2009)Google Scholar
  11. 11.
    F. De Lucia, A. Samuels, R. Harmon, R. Walters, K. McNesby, A. LaPointe, R. Winkel, A. Miziolek, IEEE Sens. J. 5, 681 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Gottfried, F.D. Lucia, C.J. Munson, A. Miziolek, Anal. Bioanal. Chem. 395, 283 (2009)Google Scholar
  13. 13.
    V. Demtreder, Laser Spectroscopy. Basic Principles and Experimental Technique (Science, Moscow, 1985)Google Scholar
  14. 14.
    S. Sharma, P. Lucey, M. Ghosh, H. Hubble, K. Horton, Spectrochim. Acta A 59, 2391 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. Sharma, S. Angel, Spectrochim. Acta A 61, 2288 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    D. Tuschel, A. Mikholin, B. Lemoff, S. Asher, Appl. Spectrosc. 64(4), 425 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    K.L. Gares et al., Review of explosive detection methods and the emergence of standoff deep UV resonance Raman. J. Raman Spectrosc. 47, 124–141 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    B.H. Hokra et al., Single-shot stand-off chemical identification of powers using random Raman lasing. PNAS 111(34), 12320–12324 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Ahmanov, N.I. Koroteev, UFN 123, 405 (1977)CrossRefGoogle Scholar
  20. 20.
    T. Arusi-Parpar, D. Heflinger, R. Lavi, Appl. Opt. 40, 6677 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    T. Arusi-Parpar, R. Lavi, Remote detection of explosives by enhanced pulsed laser photodissotiation/laser-induced fluorescence method, in Paper Presented at the NA TO Advanced Research Workshop on Stand-off Detection of Suicide Bombers and Mobile Subjects Pfinztal (2006), pp. 13–14Google Scholar
  22. 22.
    C. Wynn, S. Palmacci, R. Kunz, M. Rothshild, Lincoln Lab. J. 17(2), 27 (2008)Google Scholar
  23. 23.
    C. Wynn, R. Palmacci, K. Kunz, K. Clow, M. Rothshild, Proc. SPIE Int. Soc Opt. Eng. 6954, 695407 (2008)Google Scholar
  24. 24.
    C. Wynn, R. Palmacci, K. Kunz, K. Clow, M. Rothshild, Appl. Opt. 37(31), 5767 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. White, F. Akin, H. Oser, R. Crosley, Appl. Opt. 50(1), 74 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C. Bauer, P. Geiser, J. Burgmeier, J. Holl, W. Schade, Appl. Phys. B Lasers Opt. 85, 251 (2006)Google Scholar
  27. 27.
    C. Bauer, J. Burgmeier, C. Bohling, W. Schade, J.C. Holl, in Proceedings of the NATO Advanced Research Workshop on Stand-off Detection of Suicide-Bombers and Mobile Subjects (Springer, The Netherlands, 2006), p. 27Google Scholar
  28. 28.
    U. Willer, M. Saraji, A. Khorsandi, P. Geisher, W. Schade, Opt. Lasers Eng. 44, 699 (2006)CrossRefGoogle Scholar
  29. 29.
    C. Bauer, A. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Mffller, G. Holl, Appl. Phys. B 92(3), 327 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C. Bauer, U. Willer, W. Schade, Opt. Eng. 49, 111126 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D. Edward, A. Krechetov, A. Mitrofanov, D. Nurmukhametov, M. Kuklja, J. Phys. Chem. C 115, 6893–6901 (2011)Google Scholar
  32. 32.
    Y. Sun, X. Tao, Y. Shu, F. Zhong, UV-induced photodecomposition of 2,2′, 4,4′, 6,6′-hexanitrostillbene (HNS), Mater. Sci.-Pol. 31(3), 306–311 (2013), Scholar
  33. 33.
    S. Kakar et al., Phys. Rev. B. 62, 15666 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. McDonald et al., J. Energ. Mater. 19, 101 (2001)CrossRefGoogle Scholar
  35. 35.
    A.S. Tverjanovich, A.O. Averyanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, Effect of laser radiation on tetrazolate ammine cobalt III complexes. Bull. SpbSIT (TU) 26(52), 3–7 (2014)Google Scholar
  36. 36.
    A.S. Tverjanovich, A.O. Averyanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, The Raman spectra of nitrotetrazolo(lato) ammine cobalt III perchlorates. Bull. SpbSIT (TU) 27(53), 8–10 (2014)Google Scholar
  37. 37.
    A.S. Tverjanovich et al., Universum. 12(19) (2015)Google Scholar
  38. 38.
    Int. J. Energ. Mater. Chem. Propuls. 15(2), 113–122 (2016)Google Scholar
  39. 39.
    G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, M.A. Ilyushin, A.S. Tverjanovich, Yu.S. Tver’yanovich, Decomposition of Pentaammineaquacobalt (III) Perchlorate under laser radiation action. Russ. J. Gen. Chem. 87(7), 1451–1455 (2017)Google Scholar
  40. 40.
    M.A. Ilyushina, Yu.S. Tverjanovich, A.S. Tverjanovich, A.O. Aver’yanov, A.V. Smirnov, I.V. Shugalei, On the mechanism of Cobalt(III) aminates pyrolysis. Russ. J. Gen. Chem. 87(11), 2600–2604 (2017)CrossRefGoogle Scholar
  41. 41.
    A.S. Tverjanovicha, A.O. Aver’yanov, M.A. Ilyshin, Yu.S. Tverjanovich, A.V. Smirnov, Decomposition of Cobalt(III) Nitrotetrazolato Amminates under the action of laser light. Russ. J. Gen. Chem. 88(2), 226–231 (2017)CrossRefGoogle Scholar
  42. 42.
    M.A. Ilyushin, A.V. Smirnov, V.N. Andreev, I.V. Tselinskii, I.V. Shugalei, O.M Nesterova. Russ. J. Gen. Chem. 85(13), 1620 (2015)Google Scholar
  43. 43.
    A.V. Smirnov, M.A. Ilyushin, I.V. Tselinskii, Synthesis of Cobalt(III) Ammine complexes as explosives for safe taking charges. Russ. J. Appl. Chem. 77(5), 794–796 (2004)CrossRefGoogle Scholar
  44. 44.
    M.A. Ilyushin, A.M. Sudarikov, I.V. Tselinskii, Metallic Complexes in High-Energy Materials (LGU im A. S. Pushkina Publ., St. Petersburg, 2010), p. 188Google Scholar
  45. 45.
    M.A. Ilyushin, I.V. Tselinskii, A.A. Kotomin, High Power Substances for Arsenal of Initiation (SPbGTI (TU) Publ., St. Petersburg, 2013), p. 176Google Scholar
  46. 46.
    Int. J. Energ. Mater. Chem. Propuls. 15(2), 113–122 (2016)Google Scholar
  47. 47.
    Eng. J. Gun. Than. 88(2) (2017)Google Scholar
  48. 48.
    JTh Kloprogge, D. Wharton, L. Hickey et al., Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4 in Mg/Al-hydrotalcite. Am. Miner. 87(5–6), 623–629 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    E. Ingier-Stocka, M. Maciejewski, Thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O: I. Identification of the solid products. Thermochim. Acta. 354, 45–57 (2000)Google Scholar
  50. 50.
    E. Mikulia, A. Migdal-Mikulia, N.S. Gorskaa Wrobelb, J. Sciesinskic, E. Sciesinskac, Phase transition and molecular motions in [Co(MH3)6](ClO4)3 studied by differential scanning calorimetry and infrared spectroscopy. J. Mol. Struct. 651–653 (2003)Google Scholar
  51. 51.
    Sigma-Aldrich, Catalog of Raman spectra, Hexamminecobalt (III) chloride (2012)Google Scholar
  52. 52.
    H.A. Block, Vibrational study of the hexamminecobalt (III) ion. Trans. Faraday Soc. 55, 867–875 (1959)CrossRefGoogle Scholar
  53. 53.
    V.K. Golubev, M.A. Ilyushin, The primary mechanism of decomposition of nitrotetrazolium of cobalt(III)//Doha. 87(2), 312 (2017)Google Scholar
  54. 54.
    V.K. Golubev, M.A. Ilyushin, Primary decomposition mechanism of Cobalt (III) Nitrotetrazolatoammine complexes. Russ. J. Gen. Chem. 87, 286 (2017)CrossRefGoogle Scholar
  55. 55.
    A.S. Tverjanovich, A.O. Aver’yanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, Russ. J. Appl. Chem. 88(2), 226 (2015)CrossRefGoogle Scholar
  56. 56.
    A.S. Tverjanovich, e.a. Patent RF 2636525 (2016)Google Scholar
  57. 57.
    M.A. Ilyushin et al., Effect of additives of ultra fine carbon particles on the laser initiation threshold of a polymer is a photosensitive explosive composition. Chem. Fiz 24(10), 49–56 (2005)Google Scholar
  58. 58.
    M. Harkoma, Confinement in the diode laser ignition of energetic materials, Thesis for the degree of Doctor of Technology to be presented with due permission for public examination and criticism in Sahkotalo Building, Auditorium S1, at Tampere University of Technology, 2010Google Scholar
  59. 59.
    A.V. Kalenskii et al., Paradox of small particles in the pulsed laser initiation of explosive decomposition. Combust. Explos. Shock. Waves 52(2), 234–240 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuriy Tverjanovich
    • 1
    Email author
  • Andrey Tverjanovich
    • 1
  • Anatoliy Averyanov
    • 1
  • Maksim Panov
    • 1
  • Mikhail Ilyshin
    • 2
  • Mikhail Balmakov
    • 1
  1. 1.Institute of Chemistry, St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Institute of TechnologySt. PetersburgRussia

Personalised recommendations