Advertisement

Light-Induced Processes in Porphyrin-Fullerene Systems

  • Alexander S. KonevEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

Porphyrin-fullerene dyads are representative class of donor-acceptor molecular systems capable of undergoing photoinduced charge separation, the phenomenon that is the key process in solar energy conversion systems either in organic solar cells or photoredox catalysis. The charge-separated state generated in covalently linked dyad is a highly polarized electronically excited state. Formation of this state typically proceeds as a result of the relaxation of a locally excited state of higher energy, which is populated upon the initial excitation of the dyad. The review of computational and spectroscopic studies of the excited states in porphyrin-fullerene covalently linked dyads is given in the present chapter.

Notes

Acknowledgements

The STEPS program funded by JSPS Inter-University Exchange Program and St. Petersburg State University—JTI joint program (Grant No. 12.54.1266.2016) are gratefully acknowledged.

References

  1. 1.
    G.N. Lim, C.O. Obondi, F. D’Souza, Angew. Chem. Int. Ed. 55, 11517 (2016)CrossRefGoogle Scholar
  2. 2.
    N. Martín, Chem. Commun. 2093 (2006)Google Scholar
  3. 3.
    F.D. Souza, O. Ito, Chem. Soc. Rev. 41, 86 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 47, 1455 (2014)CrossRefGoogle Scholar
  5. 5.
    E.N. Durantini, A. Moore, T.A. Moore, D. Gust, Molecules 5, 529 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Fujitsuka, K. Matsumoto, O. Ito, T. Yamashiro, Y. Aso, T. Otsubo, Res. Chem. Intermed. 27, 73 (2001)CrossRefGoogle Scholar
  7. 7.
    H. Imahori, T. Umeyama, K. Kurotobi, Y. Takano, Chem. Commun. 48, 4032 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Vasilopoulou, D.G. Georgiadou, A.M. Douvas, A. Soultati, V. Constantoudis, D. Davazoglou, S. Gardelis, L.C. Palilis, M. Fakis, S. Kennou, T. Lazarides, A.G. Coutsolelos, P.J. Argitis, Mater. Chem. A 2, 182 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Arai, S. Nobukuni, A.S.D. Sandanayaka, O. Ito, J. Phys. Chem. C 113, 14493 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Umeyama, T. Takamatsu, N. Tezuka, Y. Matano, Y. Araki, T. Wada, O. Yoshikawa, T. Sagawa, S. Yoshikawa, H. Imahori, J. Phys. Chem. C 113, 10798 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Imahori, Y. Mori, Y.J. Matano, Photochem. Photobiol. C Photochem. Rev. 4, 51 (2003)CrossRefGoogle Scholar
  12. 12.
    H. Imahori, Y. Sakata, Eur. J. Org. Chem. 2445 (1999)CrossRefGoogle Scholar
  13. 13.
    T. Ichiki, Y. Matsuo, E. Nakamura, Chem. Commun. 49, 279 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Tamura, H. Saeki, J. Hashizume, Y. Okazaki, D. Kuzuhara, M. Suzuki, N. Aratani, H. Yamada, Chem. Commun. 50, 10379 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Kafle, A. Buldum, AIMS Mater. Sci. 4, 505 (2017)CrossRefGoogle Scholar
  16. 16.
    D.M. Guldi, Chem. Soc. Rev. 31, 22 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Imahori, K. Tamaki, H. Yamada, K. Yamada, Carbon 38, 1599 (2000)CrossRefGoogle Scholar
  18. 18.
    H. Lemmetyinen, N. Tkachenko, A. Efimov, M.J. Niemi, Porphyr. Phthalocyanines 13, 1090 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D.M. Guldi, E. Nakamura, Nat. Chem. 6, 899 (2014)CrossRefGoogle Scholar
  20. 20.
    O. Ito, Chem. Rec. 17, 326 (2017)CrossRefGoogle Scholar
  21. 21.
    N.J. Agnihotri, Photochem. Photobiol. C Photochem. Rev. 18, 18 (2014)CrossRefGoogle Scholar
  22. 22.
    A.S. Konev, A.F. Khlebnikov, P.I. Prolubnikov, A.S. Mereshchenko, A.V. Povolotskiy, O.V. Levin, A. Hirsch, Chem. Eur. J. 21, 1237 (2015)CrossRefGoogle Scholar
  23. 23.
    M.E. Zandler, F. D’Souza, Comptes Rendus Chim. 9, 960 (2006)CrossRefGoogle Scholar
  24. 24.
    O. Cramariuc, T.I. Hukka, T.T. Rantala, H. Lemmetyinen, J. Phys. Chem. A 110, 12470 (2006)CrossRefGoogle Scholar
  25. 25.
    O. Cramariuc, T.I. Hukka, T.T. Rantala, H. Lemmetyinen, J. Comput. Chem. 30, 1194 (2009)CrossRefGoogle Scholar
  26. 26.
    P.O. Krasnov, Y.M. Milytina, N.S. Eliseeva, Internet Electron. J. Mol. Des. 9, 20 (2010)Google Scholar
  27. 27.
    T. Karilainen, O. Cramariuc, M. Kuisma, K. Tappura, T.I. Hukka, J. Comput. Chem. 36, 612 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, E. Kaxiras, J. Chem. Phys. 114, 5149 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    V. Vehmanen, N.V. Tkachenko, H. Imahori, S. Fukuzumi, H. Lemmetyinen, Spectrochim. Acta A 57, 2229 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    V. Chukharev, N.V. Tkachenko, A. Efimov, D.M. Guldi, A. Hirsch, M. Scheloske, H. Lemmetyinen, J. Phys. Chem. B 108, 16377 (2004)CrossRefGoogle Scholar
  32. 32.
    F. D’Souza, S. Gadde, M.E. Zandler, A. Klykov, M.E. El-Khouly, M. Fujitsuka, O. Ito, J. Phys. Chem. A 106, 12393 (2002)CrossRefGoogle Scholar
  33. 33.
    M.E. El-Khouly, Y. Araki, O. Ito, S. Gadde, A.L. McCarty, P.A. Karr, M.E. Zandler, F. D’Souza, Phys. Chem. Chem. Phys. 7, 3163 (2005)CrossRefGoogle Scholar
  34. 34.
    E. Krokos, C. Schubert, F. Spänig, M. Ruppert, A. Hirsch, D.M. Guldi, Chem. Asian J. 7, 1451 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Imahori, N.V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata, S. Fukuzumi, J. Phys. Chem. A 105, 1750 (2001)CrossRefGoogle Scholar
  36. 36.
    V. Chukharev, N.V. Tkachenko, A. Efimov, H. Lemmetyinen, Chem. Phys. Lett. 411, 501 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    A.H. Al-Subi, M. Niemi, J. Ranta, N.V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett. 531, 164 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, J. Phys. Chem. A 107, 8834 (2003)CrossRefGoogle Scholar
  39. 39.
    M.A. Fazio, A. Durandin, N.V. Tkachenko, M. Niemi, H. Lemmetyinen, D.I. Schuster, Chem. Eur. J. 15, 7698 (2009)CrossRefGoogle Scholar
  40. 40.
    I.D. Petsalakis, N. Tagmatarchis, G. Theodorakopoulos, J. Phys. Chem. C 111, 14139 (2007)CrossRefGoogle Scholar
  41. 41.
    M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115, 9798 (1993)CrossRefGoogle Scholar
  42. 42.
    S. Vail, D.I. Schuster, D.M. Guldi, M. Isosomppi, N. Tkachenko, H. Lemmetyinen, A. Palkar, L. Echegoyen, X. Chen, J.Z.H. Zhang, J. Phys. Chem. B 110, 14155 (2006)CrossRefGoogle Scholar
  43. 43.
    D.M. Guldi, M. Prato, Acc. Chem. Res. 33, 695–703 (2000)CrossRefGoogle Scholar
  44. 44.
    H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa, Y. Sakata, J. Am. Chem. Soc. 118, 11771 (1996)CrossRefGoogle Scholar
  45. 45.
    K.Y. Yeon, D. Jeong, S.K. Kim, Chem. Commun. 46, 5572 (2010)CrossRefGoogle Scholar
  46. 46.
    A. Lukaszewicz, J. Karolczak, D. Kowalska, A. Maciejewski, M. Ziolek, R.P. Steer, Chem. Phys. 331, 359 (2007)CrossRefGoogle Scholar
  47. 47.
    S.Y. Kim, T. Joo, J. Phys. Chem. Lett. 6, 2993 (2015)CrossRefGoogle Scholar
  48. 48.
    P.G. Seybold, M. Gouterman, J. Mol. Spectrosc. 31, 1 (1969)ADSCrossRefGoogle Scholar
  49. 49.
    A.J. Harriman, Chem. Soc. Faraday Trans. 2(77), 1695 (1981)CrossRefGoogle Scholar
  50. 50.
    A.J. Harriman, Chem. Soc. Faraday Trans. 2(76), 1978 (1980)CrossRefGoogle Scholar
  51. 51.
    L. Pekkarinen, H. Linschitz, J. Am. Chem. Soc. 82, 2407 (1960)CrossRefGoogle Scholar
  52. 52.
    M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961)ADSCrossRefGoogle Scholar
  53. 53.
    D.M. Guldi, K.D. Asmus, J. Phys. Chem. A 101, 1472 (1997)CrossRefGoogle Scholar
  54. 54.
    F. D’Souza, M.E. Zandler, P.M. Smith, G.R. Deviprasad, A. Klykov, M. Fujitsuka, O. Ito, J. Phys. Chem. A 106, 649 (2002)CrossRefGoogle Scholar
  55. 55.
    D.M. Guldi, M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 119, 974 (1997)CrossRefGoogle Scholar
  56. 56.
    J.L. Anderson, Y.Z. An, Y. Rubin, C.S. Foote, J. Am. Chem. Soc. 116, 9763 (1994)CrossRefGoogle Scholar
  57. 57.
    M.A. Greaney, S.M. Gorun, J. Phys. Chem. 95, 7142 (1991)CrossRefGoogle Scholar
  58. 58.
    J. Fajer, D.C. Borg, A. Forman, D. Dolphin, R.H. Felton, J. Am. Chem. Soc. 92, 3451 (1970)CrossRefGoogle Scholar
  59. 59.
    P. Neta, A. Harriman, J. Chem. Soc. Farad. Trans. 81(2), 123 (1985)Google Scholar
  60. 60.
    J.H. Fuhrhop, D. Mauzerall, J. Am. Chem. Soc. 91, 4174 (1969)CrossRefGoogle Scholar
  61. 61.
    D.I. Schuster, Carbon 38, 1607 (2000)CrossRefGoogle Scholar
  62. 62.
    D.I. Schuster, P. Cheng, P.D. Jarowski, D.M. Guldi, C. Luo, L. Echegoyen, S. Pyo, A.R. Holzwarth, S.E. Braslavsky, R.M. Williams, G. Klihm, J. Am. Chem. Soc. 126, 7257 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussian Federation

Personalised recommendations