Advertisement

Smelting Studies for Recovery of Iron from Red Mud

  • Ender KeskinkilicEmail author
  • Saeid Pournaderi
  • Ahmet Geveci
  • Yavuz A. Topkaya
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Red mud can be regarded as a by-product of aluminium extraction process since it contains a significant amount of iron and some valuable elements. Therefore, the treatment of red mud has been a hot topic for some decades. The authors have recently started a laboratory-scale project dealing with stepwise recovery of valuable elements from red mud of Seydisehir Aluminum Plant, Turkey. The first step is related to recovery of iron and pyrometallurgical methods (smelting and solid-state reduction) will be performed. Nonferrous metals will then be selectively leached in the second step. In the extent of the present work, a literature review relevant to the smelting studies for recovery of iron from red mud was presented.

Keywords

Red mud Pyrometallurgy Smelting Iron 

Notes

Acknowledgements

The authors would like to thank The Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support given under Project No: 117M185.

References

  1. 1.
    Shamsuddin M (1986) Metal recovery from scrap and waste. J Met 38(2):24–31Google Scholar
  2. 2.
    Bruckard WJ, Calle CM, Davidson RH, Glenn AM, Jahanshahi S, Somerville MA, Sparrow GJ, Zhang L (2010) Smelting of bauxite residue to form a soluble sodium aluminum silicate phase to recover alumina and soda. Mineral Process Extr Met (Trans Inst Min Metall C) 119(1):18–26CrossRefGoogle Scholar
  3. 3.
    Hammond K, Mishra B, Apelian D, Blanpain B (2013) CR3Communication: Red mud—a resource or a waste? JOM 65(3):340–341CrossRefGoogle Scholar
  4. 4.
    Klauber C, Gräfe M, Power G (2009) Review of bauxite residue “Re-use” options. CSIRO Document DMR-3609 Project ATF-06-3: Management of bauxite residuesGoogle Scholar
  5. 5.
    Borra CR, Blanpain B, Pontikes Y, Binnemans K, Gerven TV (2015) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall.  https://doi.org/10.1007/s40831-015-0026-4CrossRefGoogle Scholar
  6. 6.
    Thakur RS, Das SN (1994) Red mud analysis and utilisation. PID and Wiley Eastern, New DelhiGoogle Scholar
  7. 7.
    Mozharenko NM, Noskov VA (2001) Possible directions in the use of red mud in metallurgical production. Metallurgicheskaya I Gornorudnaya Prom 2:127–128Google Scholar
  8. 8.
    Kauβen F, Friedrich B (2015) Reductive smelting of red mud for iron recovery. Chem Ing Tech 87(11):1535–1542CrossRefGoogle Scholar
  9. 9.
    Mishra B, Gostu S (2017) Materials sustainability for environment: red-mud treatment. Front Chem Sci Eng 11(3):483–496CrossRefGoogle Scholar
  10. 10.
    Fursman OC, Mauser JE, Butler MO, Stickney WA (1970) Utilization of red mud residues from alumina production. U.S. Bureau of Mines Report of Investigations, RI-7454Google Scholar
  11. 11.
    Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilization of wastes from metallurgical and allied industries. Resour Conserv Recycl 48:301–314CrossRefGoogle Scholar
  12. 12.
    Valavin VS, Romenets VA, Saluja JS (2002) Romelt process-the tested single stage ironmaking technology. In: Jouhari AK, Galgali RK, Misra VN (eds) Smelting reduction for iron making. Allied Publishers Pvt. Ltd., New Delhi, pp 100–113Google Scholar
  13. 13.
    Paramguru RK, Rath PC, Misra VN (2004) Trends in red mud utilization—a review, mineral processing & extractive. Metall Rev 26(1):1–29Google Scholar
  14. 14.
    Dobos G, Felfoldi Z, Horvath G, Kaptay G, Osvald Z, Solymar K (1976) Method for the treatment of red mud. U.S. Patent 3989513A. 2 Nov 1976Google Scholar
  15. 15.
    AнaтoлийAнaтoльeвич ГOЛУБEB, ЮpийAлeкcaндpoвич ГУДИM (2013) Pyrometallurgical red mud processing method. WO2013070121A1. 16 May 2013Google Scholar
  16. 16.
    Red sludge pyrometallurgical processing method, http://russianpatents.com/patent/247/2479648.html. Accessed 17 Aug 2018
  17. 17.
    Logomerac VG (1975) Complex treatment of red mud. Neue Hutte 20(3):145–148Google Scholar
  18. 18.
    Ziegenbalg S, Rudort M, Löve D, Horvath G, Siklosi P, Solymär K, Felföldi Z (1985) Erzmetall 38(4):200–204Google Scholar
  19. 19.
    Horvath G (1974) Acta techn Acad Sci Hung 79:413–449Google Scholar
  20. 20.
    Balomenos E, Gianopoulou I, Panias D, Paspaliaris I (2011) A novel red mud treatment process: process design and preliminary results. Trav 36(40):255–266Google Scholar
  21. 21.
    Balomenos E, Gianopoulou I, Gerogiorgis D, Panias D, Paspaliaris I (2013) Resource-efficient and economically viable pyrometallurgical processing of industrial ferrous by-products. Waste Biomass Valor.  https://doi.org/10.1007/s12649-013-9280-5CrossRefGoogle Scholar
  22. 22.
    Ercag E, Apak R (1997) Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig iron. J Chem Technol Biotechnol 70:241–246CrossRefGoogle Scholar
  23. 23.
    Ercag E (1995) The recovery of iron, titanium dioxide and rare earth concentrate from red mud. PhD thesis, Istanbul UniversityGoogle Scholar
  24. 24.
    Fact Sage 5.3.1. http://www.crct.polymtl.ca/fact/download.php Accessed 17 Aug 2018
  25. 25.
    Ning G, Zhang B, Liu C, Li S, Ye Y, Jiang M (2018) Large-scale consumption and zero-waste recycling method of red mud in steel making process. Minerals  https://doi.org/10.3390/min8030102CrossRefGoogle Scholar
  26. 26.
    Keskinkilic E (2007) Examination of desulfurization behaviour of ladle furnace slags of a low-sulfur steel. PhD thesis, Middle East Technical UniversityGoogle Scholar
  27. 27.
    Iwai H, Kunisada K (1989) Desulfurization and simultaneous desulfurization and dephosphorization of molten iron by Na2O–SiO2 and Na2O–CaO–SiO2 fluxes. ISIJ Int 29(2):135–139CrossRefGoogle Scholar
  28. 28.
    Hernandez A, Romero A, Chavez F, Angeles M, Morales RD (1998) Dephosphorization and desulfurization pretreatment of molten iron with CaO–SiO2–CaF2–FeO–Na2O Slags. ISIJ Int 38(2):126–131CrossRefGoogle Scholar
  29. 29.
    Choi J, Kim D, Lee H (2001) Reaction kinetics of desulfurization of molten pig iron using CaO–SiO2–Al2O3–Na2O slag systems. ISIJ Int 41(3):216–224CrossRefGoogle Scholar
  30. 30.
    Van Niekerk WH, Dippenaar RJ (1993) Thermodynamic aspects of Na2O and CaF2 containing lime-based slags used for the desulphurization of hot metal. ISIJ Int 33(1):59–65CrossRefGoogle Scholar
  31. 31.
    Suito H, Ishizaka A, Inoue R, Takahashi Y (1981) Simultaneous dephosphorization and desulfurization of carbon-saturated iron by sodium carbonate-sodium sulfate flux. Trans ISIJ 21:156–164CrossRefGoogle Scholar
  32. 32.
    Moriya T, Fujii M (1981) Dephosphorization and desulfurization of molten pig iron by Na2CO. Trans ISIJ 21:732–741CrossRefGoogle Scholar
  33. 33.
    Turkdogan ET (1985) Slags and fluxes for ferrous ladle metallurgy. Ironmaking Steelmaking 12(2):64–78Google Scholar
  34. 34.
    Rath SS, Jayasankar K, Satapathy BK, Mishra BK, Mukherjee PS (2011) Kinetics and statistical behaviour of iron recovery from red mud using plasma arc furnace. High Temp Mater Proc.  https://doi.org/10.1515/htmp.2011.031
  35. 35.
    Rath SS, Pany A, Jayasankar K, Mitra AK, Satish Kumar C, Mukherjee PS, Mishra BK (2013) Statistical modeling studies of iron recovery from red mud using thermal plasma. Plasma Sci Technol 15(5):459–464CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ender Keskinkilic
    • 1
    Email author
  • Saeid Pournaderi
    • 2
  • Ahmet Geveci
    • 3
  • Yavuz A. Topkaya
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringAtilim UniversityAnkaraTurkey
  2. 2.Agri Ibrahim Cecen UniversityPatnos, AgriTurkey
  3. 3.Department of Metallurgical and Materials EngMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations