Advertisement

Influence of Cr2O3 Content on Slag Viscosity Under Different Melting States and Temperature Programs

  • Fang Yuan
  • Tuo Wu
  • Yanling ZhangEmail author
  • Zheng Zhao
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Viscosities of Cr2O3-bearing slags were examined under different situations. The influence of Cr2O3 content on slag viscosity greatly depends on slag basicity and temperature. In CaO–SiO2–Cr2O3 ternary slags (R = 1.2, 0.8, and 0.5) with a Cr2O3 content lower than 6%, viscosity decreases with an increase in Cr2O3 content; with increasing Cr2O3 content, the slag viscosity tends to decrease, especially in the cases of higher basicity. For CaO–SiO2–10%Al2O3–Cr2O3 (R = 1.2) quaternary slags, when holding at 1953 K for 2 h and measurement was performed during cooling down to 1773 K, viscosities of this slag gradually increased with decreasing temperature to a point and then a sharp increase on viscosity appeared with further decreasing temperature; above 1873 K, the viscosity decreased with increasing Cr2O3 content, while below 1853 K, a raise in Cr2O3 content increased the viscosity. However, in the case of measurement performed from 1813 to 1673 K, the viscosity increased with an increase in Cr2O3 content. It revealed that the slag viscosity showed greater dependency on the precipitation of Cr2O3 and their morphologies.

Keywords

Cr-containing slag Viscosity Temperature programs Morphology 

Notes

Acknowledgements

The authors would like to express their appreciation to the National Natural Science Foundation (No. 51674022) for its financial support of this research work.

References

  1. 1.
    Miyamoto KI, Kato K, Yuki T (2002) Tetsu-to-Hagane 88:838–844CrossRefGoogle Scholar
  2. 2.
    Minami E, Amatatsu M, Sano N (1987) Tetsu-to-Hagane 73:S871Google Scholar
  3. 3.
    Qiu G, Chen L, Zhu J, Lv X, Bai C (2015) ISIJ Int 55:1367–1376CrossRefGoogle Scholar
  4. 4.
    Xu C, Wang W, Zhou L, Xie S, Zhang C (2015) Metall Mater Trans B 46B:882–892CrossRefGoogle Scholar
  5. 5.
    Huang W, Zhao Y, Yu S, Zhang L, Ye Z, Wang N, Chen M (2016) ISIJ Int 56:594–601CrossRefGoogle Scholar
  6. 6.
    Xu RZ, Zhang JL, Wang ZY, Jiao KX (2016) Steel Res Int 87:1–7CrossRefGoogle Scholar
  7. 7.
    Li Q, Gao J, Zhang Y, An Z, Guo Z (2017) Metall Mater Trans B 48B:346–356CrossRefGoogle Scholar
  8. 8.
    Forsbacka L, Holappa L (2004) In: VII International conference on molten slags, fluxes and salts, The South African Institute of Mining and Metallurgy, Johannesburg, pp 129–136Google Scholar
  9. 9.
    Forsbacka L, Holappa L, Kondratiev A, Jak E (2007) Steel Res Int 78:676–684Google Scholar
  10. 10.
    Wu T, Zhang Y, Yuan F, An Z. Metall Mater Trans B. Published online, https://link.springer.com/article/10.1007/s11663-018-1258-z
  11. 11.
    Holappa L, Xiao Y (2004) J S Afr I Min Metall 104:429–437Google Scholar
  12. 12.
    Behera RC, Mohanty UK (2001) ISIJ Int 41:834–843CrossRefGoogle Scholar
  13. 13.
    Ostrovski OI, Utochkin YuI, Pavlov AV, Akberdin RA (1994) ISIJ Int 34:773–775CrossRefGoogle Scholar
  14. 14.
    Nakamoto M, Forsbacka L, Holappa L (2007) In: XI International conference on innovations in the ferro alloy industry (INFACON XI), vol 1, pp 159–164Google Scholar
  15. 15.
    Kalicka Z, Kawecka-Cebula E, Pytel K (2009) Arch Metall Mater 54:179–187Google Scholar
  16. 16.
    Behera RC, Mohanty UK (2001) ISIJ Int 41:827–833CrossRefGoogle Scholar
  17. 17.
    Forsbacka L, Holappa L, Iida T, Kita Y, Toda Y (2003) Scand J Metall 32:273–280CrossRefGoogle Scholar
  18. 18.
    Forsbacka L, Holappa L (2004) Scand J Metall 33:61–68CrossRefGoogle Scholar
  19. 19.
    Wang Z, Sun Y, Sridhar S, Zhang M, Guo M, Zhang Z (2015) Metall Mater Trans B 46B:537–541CrossRefGoogle Scholar
  20. 20.
    Kim TS, Park JH (2014) ISIJ Int 54:2031–2038CrossRefGoogle Scholar
  21. 21.
    Schumacher KJ, White JF, Downey JP (2015) Metall Mater Trans B 46B:119–124. Arrhenius S (1887). Zeitschrift für Physikalische Chemie 1:285–298Google Scholar
  22. 22.
    Forsbacka L. Experiences in slag viscosity measurement by rotation cylinder method. Research report, Laboratory of Metallurgy, Helsinki University of TechnologyGoogle Scholar
  23. 23.
    Mills K (2011) The estimation of slag properties. Short course presented as part of Southern African Pyrometallurgy 2011, 7 Mar 2011Google Scholar
  24. 24.
    Fincham CJB, Richardson FD (1952) Proc R Soc Lond 223:40–62Google Scholar
  25. 25.
    Mills KC, Yuan L, Li Z, Zhang GH, Chou KC (2012) High Temp Mater P 31:301–321Google Scholar
  26. 26.
    Verein Deutscher Eisenhüttenleute (VDEh) (1995) Slag atlas, 2nd edn. Verlag Stahleisen CmbH, Germany, pp 101–120Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations