Advertisement

The Quantum Hall Effect

  • Yonatan CohenEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the last four decades, one of the most ubiquitous and fruitful platforms for condensed matter physics experiments was the 2D electron gas (2DEG) system embedded in GaAs/AlGaAs heterostructures. Such heterostructures and the use of modulation doping leads to a system of electrons that are free to move with incredible high mobility in the x-y plane while they have no motion in the z-direction.

References

  1. 1.
    Umansky, V., Heiblum, M.: MBE growth of high-mobility 2DEG. In: Molecular Beam Epitaxy, 121–137. Elsevier (2013)  https://doi.org/10.1016/b978-0-12-387839-7.00006-3CrossRefGoogle Scholar
  2. 2.
    Hall, E.H.: On a new action of the magnet on electric currents. Source Am. J. Math. 2, 287–292 (1879)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Klitzing, K. V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Ilani, S., et al.: The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Chklovskii, D.B., Shklovskii, B.I., Glazman, L.I.: Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Tsui, D.C., Stormer, H.L., Gossard, A.C.: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dolev, M., Heiblum, M., Umansky, V., Stern, A., Mahalu, D.: Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Bid, A., et al.: Observation of neutral modes in the fractional quantum Hall effect regime. In: AIP Conference Proceedings 1399, 633–634 (2011)Google Scholar
  12. 12.
    Willett, R. L., Pfeiffer, L. N., West, K. W.: Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl. Acad. Sci. U. S. A. 106, 8853–8 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Banerjee, M., et al.: Observation of half-integer thermal Hall conductance. arXiv:1710.00492 (2017)
  14. 14.
    Kane, C.L., Fisher, M.P.A., Polchinski, J.: Randomness at the edge: theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett. 72, 4129–4132 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Protopopov, I.V., Gefen, Y., Mirlin, A.D.: Transport in a disordered ν = 2∕3 fractional quantum Hall junction. Ann. Phys. (N. Y) 385, 287–327 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bid, A., et al.: Observation of neutral modes in the fractional quantum Hall regime. Nature 466 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Inoue, H., et al.: Proliferation of neutral modes in fractional quantum Hall states. Nat. Commun. 5, 4067 (2014)CrossRefGoogle Scholar
  18. 18.
    Clarke, D.J., Alicea, J., Shtengel, K.: Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Braun Center for Submicron ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations