Advertisement

Information-Rich Manufacturing Metrology

  • Richard LeachEmail author
  • Patrick Bointon
  • Xiaobing Feng
  • Simon Lawes
  • Samanta Piano
  • Nicola Senin
  • Danny Sims-Waterhouse
  • Petros Stavroulakis
  • Rong Su
  • Wahyudin Syam
  • Matthew Thomas
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 530)

Abstract

Information-rich metrology (IRM) is a new term that refers to an approach, where the conventional paradigm of measurement is transcended, thanks to the introduction and active role of multiple novel sources of information. The overarching goal of IRM is to encompass and homogenise all those measurement scenarios where information available from heterogeneous sources, for example, from the object being measured, the manufacturing process that was used to fabricate it, the workings of the measurement instrument itself, as well as from any previous measurements carried with any other instrument, is gathered and somewhat incorporated with an active role into the measurement pipeline in order to ultimately achieve a higher-quality measurement result (better metrological performance, shorter measurement times, smaller consumption of resources). Examples of IRM in action in precision and additive manufacturing will be presented, including the measurement of form and texture.

Keywords

Manufacturing metrology Form measurement Texture measurement 

Notes

Acknowledgements

We would like to thank EPSRC Grant No. EP/M008983/1 for supporting this work. Thanks also to all members of the Manufacturing Metrology Team at University of Nottingham who have contributed significantly in the development of IRM.

References

  1. Allwood, J., et al.: Manufacturing at double the speed. Mat. Process. Technol. 229, 729–757 (2015)CrossRefGoogle Scholar
  2. Amigoni, F., Brandolini, A., D’Antona, G., Ottoboni, R., Somalvico, M.: Artificial intelligence in science of measurements: from measurement instruments to perceptive agencies. IEEE Trans. Instrum. Meas. 52, 716–723 (2003)CrossRefGoogle Scholar
  3. Boreman, G.D.: Modulation Transfer Function in Optical and Electro-Optical Systems. SPIE Press, Bellingham (2001)CrossRefGoogle Scholar
  4. Bruzzone, A.A.G., Costa, H.L., Lonardo, P.M., Lucca, D.A.: Advances in engineered surfaces for functional performance. Ann. CIRP 57, 750–769 (2008)CrossRefGoogle Scholar
  5. Coupland, J.M., Lobera, J.: Measurement of steep surfaces using white light interferometry. Strain 4, 69–78 (2010)CrossRefGoogle Scholar
  6. Ekbert, P., Su, R., Leach, R.K.: High-precision lateral distortion measurement and correction in coherence scanning interferometry using an arbitrary surface. Opt. Express 25, 18703–18712 (2017)CrossRefGoogle Scholar
  7. Everton, S.K., Hirsch, M., Stavroulakis, P., Leach, R.K., Clare, A.T.: Review of in-situ monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRefGoogle Scholar
  8. Fang, F.Z., Zhang, X.D., Weckenmann, A., Zhang, G.X., Evans, C.: Manufacturing and measurement of freeform optics. Ann. CIRP 62, 823–846 (2013)CrossRefGoogle Scholar
  9. Gao, F., Leach, R.K., Petzing, J., Coupland, J.M.: Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 19, 015303 (2008)CrossRefGoogle Scholar
  10. Grimm, T., Wiora, G., Witt, G.: Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf. Topogr. Metrol. Prop. 3, 014001 (2015)CrossRefGoogle Scholar
  11. Hahn, R., Krauter, J., Körner, K., Gronle, M., Osten, W.: Single-shot low coherence pointwise measuring interferometer with potential for in-line inspection. Meas. Sci. Technol. 28, 025009 (2016)CrossRefGoogle Scholar
  12. Harding, K.: Handbook of Optical Dimensional Metrology. Taylor & Francis, London (2013)CrossRefGoogle Scholar
  13. Hiersemenzel, F., Petzing, J., Leach, R.K., Helmli, F.S., Singh, J.: Areal texture and angle measurements of tilted surfaces using focus variation methods. In: Proceedings of 3rd International Conference on Surface Metrology, Annecy, France, pp. 85–89 (2012)Google Scholar
  14. Jiang, X., Wang, K., Gao, F., Muhamedsalih, H.: Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Appl. Opt. 15, 2903–2909 (2010)CrossRefGoogle Scholar
  15. Kayser, D., Bothe, T., Osten, W.: Scaled topometry in a multisensor approach. Opt. Eng. 43, 2469–2477 (2004)CrossRefGoogle Scholar
  16. Launhardt, M., et al.: Detecting surface roughness on SLS parts with various measuring techniques. Polym. Testing 53, 217–226 (2016)CrossRefGoogle Scholar
  17. Leach, R.K.: Optical Measurement of Surface Topography. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-12012-1CrossRefGoogle Scholar
  18. Leach, R.K., Jones, C.J., Sherlock, B., Krysinski, A.: Metrology challenges for highly parallel micro-manufacture. In: Proceedings of 4M, San Sebastian, Spain, pp. 25–28 (2013)Google Scholar
  19. Leach, R.K., et al.: Open questions is surface topography measurement: a roadmap. Surf. Topogr. Metrol. Prop. 3, 013001 (2014)CrossRefGoogle Scholar
  20. Leach, R.K., Sherlock, B.: Applications of super-resolution imaging in the field of surface topography measurement. Surf. Topogr. Metrol. Prop. 2, 123001 (2014)Google Scholar
  21. Lehmann, P., Xie, W.: Signal formation in depth-scanning 3D interference microscopy at high numerical apertures. In: Proceedings of SPIE, vol. 9660, pp. 966015–966015-12 (2015)Google Scholar
  22. Madsen, M.H., Hansen, P.-E.: Scatterometry – fast and robust measurements of nano-textured surfaces. Surf. Topogr. Metrol. Prop. 4, 023003 (2016)CrossRefGoogle Scholar
  23. Malshe, A., Rajurkar, K., Samant, A., Hansen, H.N., Bapat, S., Jiang, X.: Bio-inspired functional surfaces for advanced applications. Ann. CIRP 62, 607–628 (2013)CrossRefGoogle Scholar
  24. Mathia, T.G., Pawlus, P., Wieczorowski, M.: Recent trends in surface metrology. Wear 271, 494–508 (2011)CrossRefGoogle Scholar
  25. Nikolaev, N., Petzing, J., Coupland, J.M.: Focus variation microscope: linear theory and surface tilt sensitivity. Appl. Opt. 55, 3555–3565 (2016)CrossRefGoogle Scholar
  26. Palousek, D., Omasta, M., Koutny, D., Bednar, J., Koutecky, T., Dokoupil, F.: Effect of matte coating on 3D optical measurement accuracy. Opt. Materials 40, 1–9 (2015)CrossRefGoogle Scholar
  27. Rana, N., Zhang, Y., Wall, D., Dirahoui, B.: Predictive data analytics and machine learning enabling metrology and process control for advanced node IC fabrication. In: IEEE Advanced Semiconductor Manufacturing Conference, pp. 313–319 (2015)Google Scholar
  28. Sims-Waterhouse, D., Piano, S., Leach, R.K.: Verification of micro-scale photogrammetry for smooth three-dimensional object measurement. Meas. Sci. Technol. 28, 055010 (2017)CrossRefGoogle Scholar
  29. Stavroulakis, P., et al.: Combined use of a priori data for fast system self-calibration of a non-rigid multi-camera fringe projection system. In: Proceedings of SPIE, vol. 1033, p. 1033006-1-12 (2017a)Google Scholar
  30. Stavroulakis, P., Sims-Waterhouse, D., Piano, S., Leach, R.K.: A flexible decoupled camera and projector fringe projection system using inertial sensors. Opt. Eng. 56, 104106 (2017)CrossRefGoogle Scholar
  31. Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in Industry 4.0. Proc. CIRP 40, 536–541 (2016)CrossRefGoogle Scholar
  32. Su, R., Wang, Y., Coupland, J.M., Leach, R.K.: On tilt and curvature dependent errors and the calibration of coherence scanning interferometers. Opt. Express 25, 3297–3310 (2017b)Google Scholar
  33. Syam, W.P., Jianwei, W., Zhao, B., Maskery, I., Elmadih, W., Leach, R.K.: Design and analysis of strut-based lattice structures for vibration isolation. Precis. Eng. (2018)Google Scholar
  34. Thomas, T.R.: Roughness and function. Surf. Topogr. Metrol. Prop. 2, 014001 (2013)CrossRefGoogle Scholar
  35. Townsend, A., Senin, N., Blunt, L.A., Taylor, J., Leach, R.K.: Surface texture measurement and characterisation for additive manufacturing. Precis. Eng. 46, 34–47 (2016)CrossRefGoogle Scholar
  36. Van der Jeught, S., Dirckx, J.J.J.: Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016)CrossRefGoogle Scholar
  37. Wang, J., Jiang, X., Blunt, L.A., Leach, R.K., Scott, P.J.: Intelligent sampling for the measurement of structured surfaces. Meas. Sci. Technol. 23, 085006 (2012)CrossRefGoogle Scholar
  38. Wang, J., Leach, R.K., Jiang, X.: Review of the data fusion techniques in surface metrology. Surf. Topogr. Metrol. Prop 3, 023001 (2015)CrossRefGoogle Scholar
  39. Weckenmann, A., et al.: Multisensor data fusion in dimensional metrology. Ann. CIRP 58, 701–721 (2009)CrossRefGoogle Scholar
  40. Yu, M., Zhang, Y., Li, Y., Zhang, D.: Adaptive sampling method for the inspection planning on CMM for free-form surfaces. Int. J. Manuf. Technol. 67, 1967–1975 (2012)CrossRefGoogle Scholar
  41. Zhang, Z.H.: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Lasers Eng. 50, 1097–1106 (2012)CrossRefGoogle Scholar
  42. Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Richard Leach
    • 1
    Email author
  • Patrick Bointon
    • 1
  • Xiaobing Feng
    • 1
  • Simon Lawes
    • 1
  • Samanta Piano
    • 1
  • Nicola Senin
    • 1
    • 2
  • Danny Sims-Waterhouse
    • 1
  • Petros Stavroulakis
    • 1
  • Rong Su
    • 1
  • Wahyudin Syam
    • 1
  • Matthew Thomas
    • 1
  1. 1.Manufacturing Metrology TeamUniversity of NottinghamNottinghamUK
  2. 2.Department of EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations