Advertisement

A Non-invasive Method for Biological Age Estimation Using Frailty Phenotype Assessment

  • Paola Pierleoni
  • Alberto Belli
  • Roberto Concetti
  • Lorenzo Palma
  • Federica Pinti
  • Sara RaggiuntoEmail author
  • Simone Valenti
  • Andrea Monteriù
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 544)

Abstract

The human body has two different ages: a Chronological Age (CA), the actual time a person has been alive, and a Biological Age (BA), the real age that indicate the decline in health and in function ability during aging. Among previous studies, some authors proposed methodologies to estimate the Biological Age starting from non-invasive frailty measurements to evaluate the Frailty Index, others proposed invasive and expensive methods to measure the biological aging. Conversely, in this paper we propose a method to estimate the BA of a subject based on the assessment of the Frailty Phenotype. This type of evolution allows an efficient estimation of the frailty in contrast with the Frailty Index which is composed by a long checklist of clinical conditions and diseases to be evaluated from medical staff. We developed a cloud application, able to store and elaborate the data acquired during the evaluation protocol of the Frailty Phenotype, and also able to automatically provide the state of phenotypic fragility, and finally the Biological Age of a subject.

Keywords

Biological Age Frailty phenotype Cloud application 

References

  1. 1.
    Arbeev KG, Cohen AA, Arbeeva LS, Milot E, Stallard E, Kulminski AM, Akushevich I, Ukraintseva SV, Christensen K, Yashin AI (2016) Optimal versus realized trajectories of physiological dysregulation in aging and their relation to sex-specific mortality risk. Front Public Health 4:3CrossRefGoogle Scholar
  2. 2.
    Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P (2014) Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 136:101–115CrossRefGoogle Scholar
  3. 3.
    Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, Wolfson C (2007) Frailty: an emerging research and clinical paradigm–issues and controversies. J Gerontol Ser A: Biol Sci Med Sci 62(7):731–737CrossRefGoogle Scholar
  4. 4.
    Breitling LP, Saum KU, Perna L, Schöttker B, Holleczek B, Brenner H (2016) Frailty is associated with the epigenetic clock but not with telomere length in a german cohort. Clin Epigenetics 8(1):21CrossRefGoogle Scholar
  5. 5.
    Cesari M, Gambassi G, van Kan GA, Vellas B (2013) The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing 43(1), 10–12CrossRefGoogle Scholar
  6. 6.
    Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908(1):244–254CrossRefGoogle Scholar
  7. 7.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol Ser A: Biol Sci Med Sci 56(3):M146–M157CrossRefGoogle Scholar
  8. 8.
    Goggins WB, Woo J, Sham A, Ho SC (2005) Frailty index as a measure of biological age in a chinese population. J Gerontol Ser A: Biol Sci Med Sci 60(8):1046–1051CrossRefGoogle Scholar
  9. 9.
    Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the american college of sports medicine and the american heart association. Circulation 116(9):1081CrossRefGoogle Scholar
  10. 10.
    Karasik D, Demissie S, Cupples LA, Kiel DP (2005) Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J Gerontol Ser A: Biol Sci Med Sci 60(5):574–587CrossRefGoogle Scholar
  11. 11.
    Levine ME (2012) Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol Ser A: Biomed Sci Med Sci 68(6):667–674CrossRefGoogle Scholar
  12. 12.
    Mathias S, Nayak U, Isaacs B (1986) Balance in elderly patients: the" get-up and go" test. Arch Phys Med Rehabil 67(6):387–389Google Scholar
  13. 13.
    Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K (2002) Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr 2(1):1CrossRefGoogle Scholar
  14. 14.
    Orgun B, Vu J (2006) Hl7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comput Biol Med 36(7–8):817–836CrossRefGoogle Scholar
  15. 15.
    Palma L, Pernini L, Belli A, Valenti S, Maurizi L, Pierleoni P (2016) Ipv6 wsn solution for integration and interoperation between smart home and aal systems. In: IEEE sensors applications symposium (SAS), pp 1–5Google Scholar
  16. 16.
    Pierleoni P, Belli A, Maurizi L, Palma L, Pernini L, Paniccia M, Valenti S (2016) A wearable fall detector for elderly people based on ahrs and barometric sensor. IEEE Sen J 16(17):6733–6744CrossRefGoogle Scholar
  17. 17.
    Pierleoni P, Belli A, Palma L, Pernini L, Valenti S (2014) An accurate device for real-time altitude estimation using data fusion algorithms. In: IEEE/ASME 10th international conference on mechatronic and embedded systems and applications (MESA), pp 1–5 (2014)Google Scholar
  18. 18.
    Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY) 8(5):1021CrossRefGoogle Scholar
  19. 19.
    Radloff LS (1977) The ces-d scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1(3):385–401CrossRefGoogle Scholar
  20. 20.
    Rockwood K, Mitnitski A (2007) Frailty in relation to the accumulation of deficits. J Gerontol Ser A: Biol Sci Med Sci 62(7):722–727CrossRefGoogle Scholar
  21. 21.
    Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K (2008) A standard procedure for creating a frailty index. BMC Geriatr 8(1):24CrossRefGoogle Scholar
  22. 22.
    Spazzafumo L, Olivieri F, Abbatecola AM, Castellani G, Monti D, Lisa R, Galeazzi R, Sirolla C, Testa R, Ostan R et al (2013) Remodelling of biological parameters during human ageing: evidence for complex regulation in longevity and in type 2 diabetes. Age 35(2):419–429CrossRefGoogle Scholar
  23. 23.
    Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31(12):741–755CrossRefGoogle Scholar
  24. 24.
    Theou O, Brothers TD, Peña FG, Mitnitski A, Rockwood K (2014) Identifying common characteristics of frailty across seven scales. J Am Geriatr Soc 62(5):901–906CrossRefGoogle Scholar
  25. 25.
    Weidner CI, Wagner W (2014) The epigenetic tracks of aging. Biol Chem 395(11):1307–1314CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paola Pierleoni
    • 1
  • Alberto Belli
    • 1
  • Roberto Concetti
    • 1
  • Lorenzo Palma
    • 1
  • Federica Pinti
    • 1
  • Sara Raggiunto
    • 1
    Email author
  • Simone Valenti
    • 1
  • Andrea Monteriù
    • 1
  1. 1.Department of Information Engineering (DII)Università Politecnica delle MarcheAnconaItaly

Personalised recommendations