Predicative Vagueness in Lung Metastases in Soft Tissue Sarcoma Screening

  • José NevesEmail author
  • Almeida Dias
  • Ana Morais
  • Francisca Fonseca
  • Patrícia Loreto
  • Victor Alves
  • Isabel Araújo
  • Joana Machado
  • Bruno Fernandes
  • Jorge Ribeiro
  • Cesar Analide
  • Filipa Ferraz
  • João Neves
  • Henrique Vicente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11308)


Soft Tissue Sarcomas (STSs) pose a potential risk for the development of lung metastases, which in turn results in a negative prognosis for patients. Presumptions about the occurrence of these abnormalities during STSs treatment would have countless implications for both patients and healthcare professionals as they could increase the efficacy of the treatment and improve overall survival. Prediction is based on a creative Logic Programming, Case Based Reasoning approach to problem solving, that is complemented with an unusual approach to Knowledge Representation and Reasoning, as it takes into consideration not only the data items entropic states but introduces the concept of Vague’s Predicate Extension.


Soft Tissue Sarcoma Magnetic Resonance Imaging Logic Programming Knowledge Representation and Reasoning Case Based Reasoning Entropy Predicative Vagueness 



This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.


  1. 1.
    American Cancer Society. Accessed 21 Mar 2018
  2. 2.
    Hartmann, J., Bauer, S.: Soft tissue sarcoma. Update Cancer Therapeutics 1(3), 385–402 (2006)CrossRefGoogle Scholar
  3. 3.
    Memorial Sloan Kettering Cancer Centre. Accessed 12 Apr 2018
  4. 4.
    Vallières, M., Freeman, C.R., Skamene, S.R., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60(14), 5471–5496 (2015)CrossRefGoogle Scholar
  5. 5.
    Sardenberg, R.A., Figueiredo, L.P., Haddad, F.J., Gross, J.L., Younes, R.N.: Pulmonary metastasectomy from soft tissue sarcomas. Clinics 65(9), 871–876 (2010)CrossRefGoogle Scholar
  6. 6.
    Chiou, H.J., et al.: Computer-aided diagnosis of peripheral soft tissue masses based on ultrasound imaging. Comput. Med. Imaging Graph. 33(5), 408–413 (2009)CrossRefGoogle Scholar
  7. 7.
    Fernandes, F., Vicente, H., Abelha, A., Machado, J., Novais, P., Neves J.: Artificial neural networks in diabetes control. In: Proceedings of the 2015 Science and Information Conference (SAI 2015), pp. 362–370. IEEE Edition (2015)Google Scholar
  8. 8.
    Ramalhosa, I., et al.: Diagnosis of alzheimer disease through an artificial neural network based system. In: Cassenti, Daniel N. (ed.) AHFE 2017. AISC, vol. 591, pp. 162–174. Springer, Cham (2018). Scholar
  9. 9.
    Fernandes, A., Vicente, H., Figueiredo, M., Neves, M., Neves, J.: An evaluative model to assess the organizational efficiency in training corporations. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 415–428. Springer, Cham (2016). Scholar
  10. 10.
    Silva, A., et al.: Length of stay in intensive care units – a case base evaluation. In: Fujita, H., Papadopoulos, G.A. (eds.) New Trends in Software Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and Applications, vol. 286, pp. 191–202. IOS Press, Amsterdam (2016)Google Scholar
  11. 11.
    Neves, J., et al.: A deep learning approach to case based reasoning to the evaluation and diagnosis of cervical carcinoma. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha, Q.T. (eds.) Modern Approaches for Intelligent Information and Database Systems. SCI, vol. 769, pp. 185–197. Springer, Cham (2018). Scholar
  12. 12.
    Begum, S., Ahmed, M.U., Funk, P., Xiong, N., Folke, M.: Case-based reasoning systems in the health sciences: a survey of recent trends and developments. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41, 421–434 (2011)CrossRefGoogle Scholar
  13. 13.
    Blanco, X., Rodríguez, S., Corchado, J.M., Zato, C.: Case-based reasoning applied to medical diagnosis and treatment. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distributed computing and artificial intelligence. AISC, vol. 217, pp. 137–146. Springer, Cham (2013). Scholar
  14. 14.
    Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRefGoogle Scholar
  15. 15.
    ImageJ. Accessed 25 July 2018
  16. 16.
    ITK-SNAP. Accessed 11 June 2018
  17. 17.
    Selvaraj, D., Dhanasekaran, R.: A review on tissue segmentation and feature extraction of MRI brain images. Int. J. Comput. Sci. Eng. Technol. 4(10), 1313–1332 (2013)Google Scholar
  18. 18.
    ImageJ User Guide. Accessed 14 Feb 2018
  19. 19.
    FeatureJ: Statistics. Accessed 02 May 2018
  20. 20.
    Janssen, R., Spronck, P., Arntz, A.: Case-based reasoning for predicting the success of therapy. Expert Syst. 32(2), 165–177 (2015)CrossRefGoogle Scholar
  21. 21.
    El-Sappagh, S., Elmogy, M., Riad, A.M.: A fuzzy-ontology oriented case-based reasoning framework for semantic diabetes diagnosis. Artif. Intell. Med. 65(3), 179–208 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centro Algoritmi, Universidade do MinhoBragaPortugal
  2. 2.CESPU, Instituto Universitário de Ciências da SaúdeGandraPortugal
  3. 3.Departamento de InformáticaEscola de Engenharia, Universidade do MinhoBragaPortugal
  4. 4.Farmácia de LamaçãesBragaPortugal
  5. 5.Escola Superior de Tecnologia e Gestão, ARC4DigiT – Applied Research Center for Digital Transformation, Instituto Politécnico de Viana do CasteloViana do CasteloPortugal
  6. 6.Mediclinic Arabian RanchesDubaiUnited Arab Emirates
  7. 7.Departamento de QuímicaEscola de Ciências e Tecnologia, Centro de Química de Évora, Universidade de ÉvoraÉvoraPortugal

Personalised recommendations