Advertisement

Texture Classification Using Deep Convolutional Neural Network with Ensemble Learning

  • Krishan GuptaEmail author
  • Tushar JainEmail author
  • Debarka Sengupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11308)

Abstract

This paper approaches the problem of texture classification from very challenging dataset, the describable texture dataset (DTD), using a combination of popular pre-trained convolutional neural networks architectures to improve the overall accuracy of the system. Different architectures include mixture of VGG, Resnet50, Inception, Xception models with different number of layers and parameters which are individually tweaked to attain maximum accuracy. The results obtained from these models are combined using different technique to obtain the best results. In order to better generalize our model we even tested for other well known datasets such as KTH-TIP-2b, FMD and CUReT. Using the ensemble techniques we were able to achieve comparable accuracy wrt to state of the art techniques.

Keywords

Texture classification Describable Texture Dataset (DTD) CNN 

References

  1. 1.
    Andrearczyk, V., Whelan, P.F.: Using filter banks in convolutional neural networks for texture classification. Pattern Recogn. Lett. 84, 63–69 (2016)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  3. 3.
    Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1597–1604. IEEE (2005)Google Scholar
  4. 4.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint, 1610–02357 (2017)Google Scholar
  5. 5.
    Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3606–3613. IEEE (2014)Google Scholar
  6. 6.
    Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3828–3836. IEEE (2015)Google Scholar
  7. 7.
    Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)CrossRefGoogle Scholar
  8. 8.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  9. 9.
    Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, Bari, Italy, pp. 148–156 (1996)Google Scholar
  10. 10.
    Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 262–270 (2015)Google Scholar
  11. 11.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  13. 13.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  14. 14.
    Mao, J., Zhu, J., Yuille, A.L.: An active patch model for real world texture and appearance classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 140–155. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10578-9_10CrossRefGoogle Scholar
  15. 15.
    Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H.: Recognizing materials using perceptually inspired features. Int. J. Comput. Vis. 103(3), 348–371 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  17. 17.
    Song, Y., Cai, W., Li, Q., Zhang, F., Dagan Feng, D., Huang, H.: Fusing subcategory probabilities for texture classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4409–4417 (2015)Google Scholar
  18. 18.
    Timofte, R., Van Gool, L.J.: A training-free classification framework for textures, writers, and materials. BMVC 13, 14 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Indraprastha Institute of Information Technology, Delhi (IIIT-D)New DelhiIndia

Personalised recommendations