Advertisement

Modeling Sustainability Reporting with Ternary Attractor Neural Networks

  • Mario González
  • David DominguezEmail author
  • Odette Pantoja
  • Carlos Guerrero
  • Francisco B. Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11308)

Abstract

This work models the Corporate Sustainability General Reporting Initiative (GRI) using a ternary attractor network. A dataset of 15 years evolution of the GRI reports for a world-wide set of companies was compiled from a recent work and adapted to match the pattern coding for a ternary attractor network. We compare the performance of the network with a classical binary attractor network. Two types of criteria were used for encoding the ternary network, i.e., a simple and weighted threshold, and the performance retrieval was better for the latter, highlighting the importance of the real patterns’ transformation to the three-state coding. The network exceeds the retrieval performance of the binary network for the chosen correlated patterns (GRI). Finally, the ternary network was proved to be robust to retrieve the GRI patterns with initial noise.

Keywords

Sustainability Ternary coding Bi-linear and Bi-quadratic retrieval 

Notes

Acknowledgments

This work has been supported by Spanish grants MINECO (http://www.mineco.gob.es/) TIN2014-54580-R, TIN2017-84452-R, and by UAM-Santander CEAL-AL/2017-08, and UDLA-SIS.MG.17.02.

References

  1. 1.
    Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, New York (1989)CrossRefGoogle Scholar
  2. 2.
    Bollé, D., Dominguez, D.R.C., Erichsen Jr., R., Korutcheva, E., Theumann, W.K.: Time evolution of the extremely diluted Blume-Emery-Griffiths neural network. Phys. Rev. E 68(6), 062901 (2003)CrossRefGoogle Scholar
  3. 3.
    Bollé, D., Dominguez, D., Amari, S.I.: Mutual information of sparsely coded associative memory with self-control and ternary neurons. Neural Netw. 13(4–5), 455–462 (2000)CrossRefGoogle Scholar
  4. 4.
    Carreta Dominguez, D.R., Korutcheva, E.: Three-state neural network: from mutual information to the Hamiltonian. Phys. Rev. E 62, 2620–2628 (2000)CrossRefGoogle Scholar
  5. 5.
    Dominguez, D., Pantoja, O., González, M.: Mapping the global offshoring network through the panama papers. In: Rocha, Á., Guarda, T. (eds.) ICITS 2018. AISC, vol. 721, pp. 407–416. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73450-7_39CrossRefGoogle Scholar
  6. 6.
    Doria, F., Erichsen Jr., R., González, M., Rodríguez, F.B., Sánchez, Á., Dominguez, D.: Structured patterns retrieval using a metric attractor network: application to fingerprint recognition. Physica A Stat. Mech. Appl. 457, 424–436 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Etzion, D., Ferraro, F.: The role of analogy in the institutionalization of sustainability reporting. Organ. Sci. 21(5), 1092–1107 (2010)CrossRefGoogle Scholar
  8. 8.
    Fernandez-Feijoo, B., Romero, S., Ruiz, S.: Commitment to corporate social responsibility measured through global reporting initiative reporting: factors affecting the behavior of companies. J. Cleaner Prod. 81, 244–254 (2014)CrossRefGoogle Scholar
  9. 9.
    González, M., Dominguez, D., Rodríguez, F.B., Sanchez, A.: Retrieval of noisy fingerprint patterns using metric attractor networks. Int. J. Neural Syst. 24(07), 1450025 (2014)CrossRefGoogle Scholar
  10. 10.
    González, M., Dominguez, D., Sánchez, Á.: Learning sequences of sparse correlated patterns using small-world attractor neural networks: an application to traffic videos. Neurocomputing 74(14–15), 2361–2367 (2011)CrossRefGoogle Scholar
  11. 11.
    González, M., del Mar Alonso-Almeida, M., Avila, C., Dominguez, D.: Modeling sustainability report scoring sequences using an attractor network. Neurocomputing 168, 1181–1187 (2015)CrossRefGoogle Scholar
  12. 12.
    GRI: GRI sustainability reporting standards (2018). https://www.globalreporting.org/Pages/default.aspx
  13. 13.
    Guthrie, J., Farneti, F.: GRI sustainability reporting by Australian public sector organizations. Public Money Manage. 28(6), 361–366 (2008)CrossRefGoogle Scholar
  14. 14.
    Hedberg, C.J., Von Malmborg, F.: The global reporting initiative and corporate sustainability reporting in Swedish companies. Corp. Soc. Responsib. Environ. Manag. 10(3), 153–164 (2003)CrossRefGoogle Scholar
  15. 15.
    Legendre, S., Coderre, F.: Determinants of GRI G3 application levels: the case of the fortune global 500. Corp. Soc. Responsib. Environ. Manag. 20(3), 182–192 (2013)CrossRefGoogle Scholar
  16. 16.
    Marimon, F., del Mar Alonso-Almeida, M., del Pilar Rodríguez, M., Alejandro, K.A.C.: The worldwide diffusion of the global reporting initiative: what is the point? J. Cleaner Prod. 33, 132–144 (2012)CrossRefGoogle Scholar
  17. 17.
    Shahi, A., Issac, B., Modapothala, J.: Intelligent corporate sustainability report scoring solution using machine learning approach to text categorization. In: 2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT), pp. 227–232 (2012)Google Scholar
  18. 18.
    Vigneau, L., Humphreys, M., Moon, J.: How do firms comply with international sustainability standards? Processes and consequences of adopting the global reporting initiative. J. Bus. Ethics 131(2), 469–486 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mario González
    • 1
  • David Dominguez
    • 2
    Email author
  • Odette Pantoja
    • 3
  • Carlos Guerrero
    • 2
  • Francisco B. Rodríguez
    • 2
  1. 1.SI2 LabUniversidad de las AméricasQuitoEcuador
  2. 2.Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  3. 3.FCA, Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations