Advertisement

Industry 4.0, Intelligent Visual Assisted Picking Approach

  • Mario ArbuluEmail author
  • Paola MateusEmail author
  • Manuel WagnerEmail author
  • Cristian BeltranEmail author
  • Kensuke HaradaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11308)

Abstract

This work deals with a novel intelligent visual assisted picking task approach, for industrial manipulator robot. Intelligent searching object algorithm, around the working area, by RANSAC approach is proposed. After that, the image analysis uses the Sobel operator, to detect the objects configurations; and finally, the motion planning approach by Screw theory on SO(3), allows to pick up the selected object to move it, to a target place. Results and whole approach validation are discussed.

Keywords

Artificial intelligence Autonomous picking Artificial vision Sobel RANSAC Screws modeling 

References

  1. 1.
    Indri, M., Grau, A., Ruderman, M.: Guest editorial special section on recent trends and developments in industry 4.0 motivated robotic solutions. IEEE Trans. Ind. Inform. 14(4), 1677–1680 (2018).  https://doi.org/10.1109/TII.2018.2809000CrossRefGoogle Scholar
  2. 2.
    Wan, J., Tang, S., Hua, Q., Li, D., Liu, C., Lloret, J.: Context-aware cloud robotics for material handling in cognitive industrial Internet of Things. IEEE Internet Things J. 5(4), 2272–2281 (2018).  https://doi.org/10.1109/JIOT.2017.2728722CrossRefGoogle Scholar
  3. 3.
    World Robot Summit 2018. http://worldrobotsummit.org/en/
  4. 4.
    Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive multilabel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1234–1247 (2013).  https://doi.org/10.1109/TPAMI.2012.183CrossRefGoogle Scholar
  5. 5.
    Rivera, A.R., Murshed, M., Kim, J., Chae, O.: Background modeling through statistical edge-segment distributions. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1375–1387 (2013).  https://doi.org/10.1109/TCSVT.2013.2242551CrossRefGoogle Scholar
  6. 6.
    Mezouar, Y., Chaumette, F.: Optimal camera trajectory with imagebased control. Int. J. Robot. Res. 22(10–11), 781–804 (2003)CrossRefGoogle Scholar
  7. 7.
    Guo, M., Zhao, Y., Zhang, C., Chen, Z.: Fast object detection based on selective visual attention. Neurocomputing 144, 184–197 (2014)CrossRefGoogle Scholar
  8. 8.
    Stalder, S., Grabner, H., Van Gool, L.: Dynamic objectness for adaptive tracking. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 43–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37431-9_4CrossRefGoogle Scholar
  9. 9.
    Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of CVPR, pp. 2814–2821, June 2014Google Scholar
  10. 10.
    Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15 (2009). Art. no. 15CrossRefGoogle Scholar
  11. 11.
    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  12. 12.
    Price, B., Morse, B., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3161–3168 (2010)Google Scholar
  13. 13.
    Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid State Circuits 23(2), 358–367 (1988)CrossRefGoogle Scholar
  14. 14.
    Chen, J., Su, C., Grimson, W.E.L., Liu, J., Shiue, D.: Object segmentation of database images by dual multiscale morphological reconstructions and retrieval applications. IEEE Trans. Image Process. 21(2), 828–843 (2012).  https://doi.org/10.1109/TIP.2011.2166558MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jin, X.C., Ong, S.H., Jayasooriah, A.: Domain operator for binary morphological processing. IEEE Trans. Image Process. 4(7), 1042–1046 (1995).  https://doi.org/10.1109/83.392348CrossRefGoogle Scholar
  16. 16.
    Lim, J.S.: Two-Dimensional Signal and Image Processing, pp. 478–488. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  17. 17.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006).  https://doi.org/10.1007/11744023_32CrossRefGoogle Scholar
  18. 18.
    Yaniv, Z.: Random sample consensus (RANSAC) algorithm, a generic implementation. Insight J., 1–14 (2010). http://www.insight-journal.org/browse/publication/769
  19. 19.
    Mustafa, S.K., Agrawal, S.K.: On the force-closure analysis of n-DOF cable-driven open chains based on reciprocal screw theory. IEEE Trans. Robot. 28(1), 22–31 (2012).  https://doi.org/10.1109/TRO.2011.2168170CrossRefGoogle Scholar
  20. 20.
    Dimovski, I., Trompeska, M., Samak, S., Dukovski, V., Cvetkoska, D.: Algorithmic approach to geometric solution of generalized PadenKahan subproblem and its extension. Int. J. Adv. Robot. Syst., 1–11 (2018).  https://doi.org/10.1177/1729881418755157CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Nacional Abierta y a Distancia (UNAD)BogotaColombia
  2. 2.Graduate School of Engineering Science, Department of Systems InnovationOsaka UniversityToyonakaJapan

Personalised recommendations