FCA-Based Ontology Learning from Unstructured Textual Data

  • Simin JabbariEmail author
  • Kilian Stoffel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11308)


Ontologies have been frequently used for representing domain knowledge. They have lots of applications in semantic knowledge extraction. However, learning ontologies especially from unstructured data is a difficult yet an interesting challenge. In this paper, we introduce a pipeline for learning ontology from a text corpus in a semi-automated fashion using Natural Language Processing (NLP) and Formal Concept Analysis (FCA). We apply our proposed method on a small given corpus that consists of some news documents in IT and pharmaceutical domain. We then discuss the potential applications of the proposed model and ideas on how to improve it even further.


Ontology engineering Semantic knowledge extraction Formal concept analysis Natural language processing Concept lattice 


  1. 1.
    Allen, J.F.: Natural language processing. In: Encyclopedia of Cognitive Science (2006)Google Scholar
  2. 2.
    Bendaoud, R., Hacene, A.M.R., Toussaint, Y., Delecroix, B., Napoli, A.: Text-based ontology construction using relational concept analysis. In: International Workshop on Ontology Dynamics-IWOD 2007 (2007)Google Scholar
  3. 3.
    Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Mathématiques et Sciences humaines 96, 31–47 (1986)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Carpineto, C., Romano, G.: GALOIS: an order-theoretic approach to conceptual clustering. In: Proceedings of ICML, vol. 293, pp. 33–40 (1993)CrossRefGoogle Scholar
  5. 5.
    Castellanos, A., Cigarrán, J., García-Serrano, A.: Formal concept analysis for topic detection: a clustering quality experimental analysis. Inf. Syst. 66, 24–42 (2017)CrossRefGoogle Scholar
  6. 6.
    Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res. (JAIR) 24, 305–339 (2005)CrossRefGoogle Scholar
  8. 8.
    Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based approaches. In: 2015 IEEE International Conference on Semantic Computing (ICSC), pp. 244–251. IEEE (2015)Google Scholar
  9. 9.
    Ganter, B.: Two Basic Algorithms in Concept Analysis. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (2012)zbMATHGoogle Scholar
  11. 11.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, London (2006)Google Scholar
  12. 12.
    Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009). Scholar
  13. 13.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)CrossRefGoogle Scholar
  14. 14.
    Moraes, S., de Lima, V.L.S.: Combining formal concept analysis and semantic information for building ontological structures from texts: an exploratory study. In: LREC, pp. 3653–3660 (2012)Google Scholar
  15. 15.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5), 199–204 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems, vol. 2001, pp. 270–284. ACM (2001)Google Scholar
  17. 17.
    Velardi, P., Navigli, R., Cuchiarelli, A., Neri, R.: Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies. Ontol. Learn. Text Methods Eval. Appl. 123(92), 92–107 (2005)Google Scholar
  18. 18.
    Wille, R.: Lattices in Data Analysis: How to Draw Them with a Computer. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  19. 19.
    Xu, B., de Fréin, R., Robson, E., Foghlú, M.Ó.: Distributed formal concept analysis algorithms based on an iterative MapReduce framework. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 292–308. Springer, Heidelberg (2012). Scholar
  20. 20.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W., et al.: New algorithms for fast discovery of association rules. KDD 97, 283–286 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of NeuchâtelNeuchâtelSwitzerland
  2. 2.Diagnostics Data Science LabF. Hoffmann-La Roche Ltd.BaselSwitzerland

Personalised recommendations