Advertisement

Nanobiotechnology in Food Packaging

  • Hoda Jafarizadeh-Malmiri
  • Zahra Sayyar
  • Navideh Anarjan
  • Aydin Berenjian
Chapter

Abstract

Customers today demand a lot more from packaging in terms of protecting the quality, freshness and safety of foods. The nanotechnology, which uses microscopic particles, is effective and affordable and will bring out suitable food and dairy packaging in the near future. Food packaging is considered to be one of the earliest commercial applications of nanotechnology in the food sector. Applications for food contact materials using nanotechnology is: incorporating nanomaterials to improve packaging properties (flexibility and gas barrier properties); active packaging that incorporates nanoparticles with antimicrobial or oxygen scavenging properties; intelligent or smart food packaging incorporating nanosensors for sensing and signaling of microbial and biochemical changes; release of antimicrobials, antioxidants, enzymes, flavours and nutraceuticals to extend shelf life; and biodegradable polymer–nanomaterial composites by introduction of inorganic particles, such as clay, into the biopolymeric matrix and can also be controlled with surfactants that are used for the modification of layered silicate.

References

  1. Ahvenainen R. Novel food packaging techniques. Elsevier; 2003.Google Scholar
  2. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym. 2011;83(2):438–46.CrossRefGoogle Scholar
  3. Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol. 2002;3(2):113–26.CrossRefGoogle Scholar
  4. Assa F, Jafarizadeh-Malmiri H, Anarjan N, Berenjian A, Ghasemi Y. Applications of chitosan nanoparticles in active biodegradable and sustainable food packaging. In: Kale SA, Durai PRT, Prabakar K, editors. Renewable energy and sustainable development. Hauppauge: Nova Science Publishers; 2015.Google Scholar
  5. Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, Berenjian A. Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol. 2017;37(4):492–509.CrossRefGoogle Scholar
  6. Berenjian A, Ebrahiminezhad A, Southee R, Jafarizadeh-Malmiri H. Design and investigation on antimicrobial properties for novel chitosan based active food packaging. Rep Opinion. 2015;7(7):1–3.Google Scholar
  7. Chen J, Brody AL. Use of active packaging structures to control the microbial quality of a ready-to-eat meat product. Food Control. 2013;30(1):306–10.CrossRefGoogle Scholar
  8. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol. 2012;24(1):30–46.CrossRefGoogle Scholar
  9. De Jong A, Boumans H, Slaghek T, Van Veen J, Rijk R, Van Zandvoort M. Active and intelligent packaging for food: is it the future? Food Addit Contam. 2005;22(10):975–9.CrossRefGoogle Scholar
  10. Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym. 2009;75(3):385–9.CrossRefGoogle Scholar
  11. Dutta P, Tripathi S, Mehrotra G, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114(4):1173–82.CrossRefGoogle Scholar
  12. Higashisaka K, Yoshioka Y, Tsutsumi Y. Applications and safety of nanomaterials used in the food industry. Food Safety. 2015;3(2):39–47.CrossRefGoogle Scholar
  13. Jafarizadeh Malmiri H, Osman A, Tan C, Abdul R. Development of an edible coating based on chitosan-glycerol to delay ‘Berangan’ banana (Musa sapientum cv. Berangan) ripening process. Int Food Res J. 2011a;18(3).Google Scholar
  14. Jafarizadeh Malmiri H, Osman A, Tan C, Rahman AR. Evaluation of effectiveness of three cellulose derivative-based edible coatings on changes of physico-chemical characteristics of ‘Berangan’ banana (Musa sapientum cv. Berangan) during storage at ambient conditions. Int Food Res J. 2011b;18(4):1381.Google Scholar
  15. Jafarizadeh Malmiri H, Osman A, Tan CP, Abdul Rahman R. Effects of edible surface coatings (sodium carboxymethyl cellulose, sodium caseinate and glycerol) on storage quality of Berangan banana (Musa sapientum cv. Berangan) using response surface methodology. J Food Process Preserv. 2012a;36(3):252–61.CrossRefGoogle Scholar
  16. Jafarizadeh Malmiri H, Jahanian MAG, Berenjian A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotechnol. 2012b;8(4):203–19.CrossRefGoogle Scholar
  17. Joerger RD. Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag Technol Sci. 2007;20(4):231–73.CrossRefGoogle Scholar
  18. Jurmanović S, Kordić Š, Steinberg MD, Steinberg IM. Organically modified silicate thin films doped with colourimetric pH indicators methyl red and bromocresol green as pH responsive sol–gel hybrid materials. Thin Solid Films. 2010;518(8):2234–40.CrossRefGoogle Scholar
  19. Kunjachan S, Jose S, Lammers T. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm (AJP). 2014;4(2).CrossRefGoogle Scholar
  20. Leceta I, Guerrero P, Cabezudo S, de la Caba K. Environmental assessment of chitosan-based films. J Clean Prod. 2013;41:312–8.CrossRefGoogle Scholar
  21. Lee S-W, Mao C, Flynn CE, Belcher AM. Ordering of quantum dots using genetically engineered viruses. Science. 2002;296(5569):892–5.CrossRefGoogle Scholar
  22. Lee CH, An DS, Park HJ, Lee DS. Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag Technol Sci. 2003;16(3):99–106.CrossRefGoogle Scholar
  23. Martins AF, de Oliveira DM, Pereira AG, Rubira AF, Muniz EC. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int J Biol Macromol. 2012;51(5):1127–33.CrossRefGoogle Scholar
  24. Méndez-Vilas A. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex Research Center; 2013.Google Scholar
  25. Mills A, Hazafy D. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens Actuators B Chem. 2009;136(2):344–9.CrossRefGoogle Scholar
  26. Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri H. A review on green silver nanoparticles based on plants: synthesis, potential applications and eco-friendly approach. Int Food Res J. 2016;23(2):446–63.Google Scholar
  27. Peng Y, Wu Y, Li Y. Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol. 2013;59:282–9.CrossRefGoogle Scholar
  28. Pranoto Y, Rakshit S, Salokhe V. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol. 2005;38(8):859–65.CrossRefGoogle Scholar
  29. Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci. 2002;62(3):373–80.CrossRefGoogle Scholar
  30. Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control. 2010;21(11):1425–35.CrossRefGoogle Scholar
  31. Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10–11):1629–52.CrossRefGoogle Scholar
  32. Robertson G. Modified atmosphere packaging. Food packaging–principles and practice. 2nd ed. Florida: CRC Press; 2006.Google Scholar
  33. Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci. 2011;36(12):1766–82.CrossRefGoogle Scholar
  34. Sinha V, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33.PubMedGoogle Scholar
  35. Sundarraj A, GuhanNath S, Aaron S, Ranganathan T. Recent innovations in nanotechnology in food processing and its various applications—a review. Int J Pharm Sci Rev Res. 2014;29(2):116–24.Google Scholar
  36. Suppakul P, Miltz J, Sonneveld K, Bigger SW. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci. 2003;68(2):408–20.CrossRefGoogle Scholar
  37. Taoukis P, Labuza T. Applicability of time-temperature indicators as shelf life monitors of food products. J Food Sci. 1989;54(4):783–8.CrossRefGoogle Scholar
  38. Vaezifar S, Razavi S, Golozar MA, Karbasi S, Morshed M, Kamali M. Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. J Clust Sci. 2013;24(3):891–903.CrossRefGoogle Scholar
  39. Wang Y, Zhang Q, Zhang C-L, Li P. Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membrane. Food Chem. 2012;132(1):419–27.CrossRefGoogle Scholar
  40. Woranuch S, Yoksan R. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydr Polym. 2013;96(2):586–92.CrossRefGoogle Scholar
  41. Yam KL. Intelligent packaging for the future smart kitchen. Packag Technol Sci. 2000;13(2):83–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hoda Jafarizadeh-Malmiri
    • 1
  • Zahra Sayyar
    • 1
  • Navideh Anarjan
    • 2
  • Aydin Berenjian
    • 3
  1. 1.Faculty of Chemical Engineering, East AzarbaijanSahand University of TechnologyTabrizIran
  2. 2.Faculty of Chemical Engineering, East AzarbaijanIslamic Azad University Tabriz BranchTabrizIran
  3. 3.Faculty of EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations