Advertisement

Nano-additives for Food Industries

  • Hoda Jafarizadeh-Malmiri
  • Zahra Sayyar
  • Navideh Anarjan
  • Aydin Berenjian
Chapter

Abstract

Functional ingredients such as vitamins, antimicrobials, antioxidants, flavorings, colorants and preservatives in different molecular and physical forms, such as polarities (e.g. polar, nonpolar, amphiphilic), have been widely utilized in food systems and packaging. The nanostructured nutraceuticals and bioactive compounds incorporated into nano-sized delivery systems are usually known as nanoadditives. These nanomaterials are designed to be added in various food and beverage systems or their packaging polymers matrix, to promote their characteristics and give them various activities, which are described briefly in this chapter.

References

  1. Amjadi S, Ghorbani M, Hamishehkar H, Roufegarinejad L. Improvement in the stability of betanin by liposomal nanocarriers: its application in gummy candy as a food model. Food Chem. 2018;256:156–62.PubMedCrossRefGoogle Scholar
  2. Anarjan N, Jouyban A. Preparation of lycopene nanodispersions from tomato processing waste: effects of organic phase composition. Food Bioprod Process. 2017;103:104–13.CrossRefGoogle Scholar
  3. Anarjan N, Tan CP. Chemical stability of astaxanthin nanodispersions in orange juice and skimmed milk as model food systems. Food Chem. 2013a;139(1):527–31.PubMedCrossRefGoogle Scholar
  4. Anarjan N, Tan CP. Developing a three component stabilizer system for producing astaxanthin nanodispersions. Food Hydrocoll. 2013b;30(1):437–47.CrossRefGoogle Scholar
  5. Anarjan N, Mirhosseini H, Baharin BS, Tan CP. Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions. Food Chem. 2010;123(2):477–83.CrossRefGoogle Scholar
  6. Anarjan N, Mirhosseini H, Baharin BS, Tan CP. Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT-Food Sci Technol. 2011a;44(7):1658–65.CrossRefGoogle Scholar
  7. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, Cheah YK, Mirhosseini H, Baharin BS. Effect of organic-phase solvents on physicochemical properties and cellular uptake of astaxanthin nanodispersions. J Agric Food Chem. 2011b;59(16):8733–41.PubMedCrossRefGoogle Scholar
  8. Anarjan N, Tan CP, Nehdi IA, Ling TC. Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation. Food Chem. 2012;135(3):1303–9.PubMedCrossRefGoogle Scholar
  9. Anarjan N, Jafarizadeh Malmiri H, Ling TC, Tan CP. Effects of pH, ions, and thermal treatments on physical stability of astaxanthin nanodispersions. Int J Food Prop. 2014;17(4):937–47.CrossRefGoogle Scholar
  10. Anarjan N, Fahimdanesh M, Jafarizadeh-Malmiri H. β-Carotene nanodispersions synthesis by three-component stabilizer system using mixture design. J Food Sci Technol. 2017;54(11):3731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arroyo-Maya IJ, McClements DJ. Biopolymer nanoparticles as potential delivery systems for anthocyanins: fabrication and properties. Food Res Int. 2015;69:1–8.CrossRefGoogle Scholar
  12. Augustin MA, Sanguansri P. Nanostructured materials in the food industry. Adv Food Nutr Res. 2009;58:183–213.PubMedCrossRefGoogle Scholar
  13. Augustin MA, Sanguansri L, Bode O. Maillard reaction products as encapsulants for fish oil powders. J Food Sci. 2006;71(2):E25–32.CrossRefGoogle Scholar
  14. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han Y-K. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal. 2018;26(4):1201–14.PubMedCrossRefGoogle Scholar
  15. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(3):241–58.PubMedCrossRefGoogle Scholar
  16. Chen XW, Chen YJ, Wang JM, Guo J, Yin SW, Yang XQ. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties. Food Funct. 2016;7(9):3694–702.PubMedCrossRefGoogle Scholar
  17. Chen F, Fan GQ, Zhang Z, Zhang R, Deng ZY, McClements DJ. Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: impact of delivery system type and protein addition on gastrointestinal fate. Food Res Int. 2017;100:387–95.PubMedCrossRefGoogle Scholar
  18. Cheong JN, Tan CP, Man YBC, Misran M. α-Tocopherol nanodispersions: preparation, characterization and stability evaluation. J Food Eng. 2008;89(2):204–9.CrossRefGoogle Scholar
  19. Chung C, Rojanasasithara T, Mutilangi W, McClements DJ. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Res Int. 2015;76:761–8.PubMedCrossRefGoogle Scholar
  20. da Silva MM, Nora L, Cantillano RFF, Paese K, Guterres SS, Pohlmann AR, Costa TMH, Rios AO. The production, characterization, and the stability of carotenoids loaded in lipid-core nanocapsules. Food Bioprocess Technol. 2016;9(7):1148–58.CrossRefGoogle Scholar
  21. Danay D, Monique K, Jacques R, José CC. Formulation and characterization of anthocyanins-loaded nanoparticles. Curr Drug Deliv. 2017;14(1):54–64.CrossRefGoogle Scholar
  22. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. Nanotechnology in agro-food: from field to plate. Food Res Int. 2015;69:381–400.CrossRefGoogle Scholar
  23. de Campo C, Dick M, Pereira dos Santos P, Haas Costa TM, Paese K, Stanisçuaski Guterres S, de Oliveira Rios A, Hickmann Flôres S. Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: characterization and stability evaluation under different temperatures. Colloids Surf A Physicochem Eng Asp. 2018;558:410–21.CrossRefGoogle Scholar
  24. de Paz E, Martín T, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CMM, Cocero MJ. Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocoll. 2012;26(1):17–27.CrossRefGoogle Scholar
  25. de Souza Simões L, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos ÓL. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv Colloid Interf Sci. 2017;243:23–45.CrossRefGoogle Scholar
  26. de Villiers MM, Aramwit P, Kwon GS. Nanotechnology in drug delivery. New York: Springer; 2008.Google Scholar
  27. Deligiannakis Y, Sotiriou GA, Pratsinis SE. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces. 2012;4(12):6609–17.PubMedCrossRefGoogle Scholar
  28. Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Gao Z. Hollow zeolite capsules: a novel approach for fabrication and guest encapsulation. Chem Mater. 2002;14(8):3217–9.CrossRefGoogle Scholar
  29. dos Santos PP, Paese K, Guterres SS, Pohlmann AR, Costa TH, Jablonski A, Flôres SH, Rios AO. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. J Nanopart Res. 2015; 17(2).Google Scholar
  30. Duncan SE, Hannah S. 15—Light-protective packaging materials for foods and beverages. In: Yam KL, Lee DS, editors. Emerging food packaging technologies. Cambridge: Woodhead Publishing; 2012. p. 303–22.CrossRefGoogle Scholar
  31. Esquerdo VM, Silva PP, Dotto GL, Pinto LAA. Nanoemulsions from unsaturated fatty acids concentrates of carp oil using chitosan, gelatin, and their blends as wall materials. Eur J Lipid Sci Technol. 2018;120(2):1700240.CrossRefGoogle Scholar
  32. Farhath K, Syeda Juveriya F, Ilaiyaraja N, Anand T, Patil MM, Singsit D, Sharma GK. Nanoencapsulation of flavors. In: Selvamuthukumaran M, Pathak Y, editors. Flavors for nutraceutical and functional foods. Boca Raton, FL: CRC Press; 2018. p. 274–312.Google Scholar
  33. Ghayour N, Hosseini SMH, Eskandari MH, Esteghlal S, Nekoei AR, Hashemi Gahruie H, Tatar M, Naghibalhossaini F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019;87:394–403.CrossRefGoogle Scholar
  34. Golfomitsou I, Mitsou E, Xenakis A, Papadimitriou V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: a structural and activity study. J Mol Liq. 2018;268:734–42.CrossRefGoogle Scholar
  35. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gupta P, Authimoolam SP, Hilt JZ, Dziubla TD. Quercetin conjugated poly (β-Amino Esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater. 2015;27:194–204.PubMedPubMedCentralCrossRefGoogle Scholar
  37. He X, Hwang H-M. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. 2016;24(4):671–81.PubMedCrossRefGoogle Scholar
  38. He B, Ge J, Yue P, Yue X, Fu R, Liang J, Gao X. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem. 2017;221:1671–7.PubMedCrossRefGoogle Scholar
  39. Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19(2):73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hou X, Lei S, Qiu S, Guo L, Yi S, Liu W. A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent.Food Chem. 2014;153:121–9.PubMedCrossRefGoogle Scholar
  41. Huang Q, Yu H, Ru Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci. 2010;75(1):R50–7.PubMedCrossRefGoogle Scholar
  42. Jaouen G, Metzler-Nolte N. Medicinal organometallic chemistry. Berlin: Springer; 2010.CrossRefGoogle Scholar
  43. Jemaa MB, Falleh H, Serairi R, Neves MA, Snoussi M, Isoda H, Nakajima M, Ksouri R. Nanoencapsulated Thymus capitatus essential oil as natural preservative. Innov Food Sci Emerg Technol. 2018;45:92–7.CrossRefGoogle Scholar
  44. Jeong D, Na K. Chondroitin sulfate based nanocomplex for enhancing the stability and activity of anthocyanin. Carbohydr Polym. 2012;90(1):507–15.PubMedCrossRefGoogle Scholar
  45. Kadappan AS, Guo C, Gumus CE, Bessey A, Wood RJ, McClements DJ, Liu Z. The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: comparison of in vitro and in vivo studies. Mol Nutr Food Res. 2018; 62(4).CrossRefGoogle Scholar
  46. Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev. 2010;39(11):4422–32.PubMedCrossRefGoogle Scholar
  47. Karthik P, Anandharamakrishnan C. Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers. J Food Eng. 2016;187:92–105.CrossRefGoogle Scholar
  48. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol. 2016;53:34–48.CrossRefGoogle Scholar
  49. Kelland LR, Farrell NP. Platinum-based drugs in cancer therapy. New York: Humana Press; 2000.CrossRefGoogle Scholar
  50. Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–66.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Khan AU, Wei Y, Ahmad A, Haq Khan ZU, Tahir K, Khan SU, Muhammad N, Khan FU, Yuan Q. Enzymatic browning reduction in white cabbage, potent antibacterial and antioxidant activities of biogenic silver nanoparticles. J Mol Liq. 2016;215:39–46.CrossRefGoogle Scholar
  52. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q. Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem. 2009;114(2):547–52.CrossRefGoogle Scholar
  53. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol. 2011a;46(9):1947–55.CrossRefGoogle Scholar
  54. Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll. 2011b;25(5):1098–104.CrossRefGoogle Scholar
  55. Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–34.PubMedCrossRefGoogle Scholar
  56. Magalhães LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta. 2008;613(1):1–19.PubMedCrossRefGoogle Scholar
  57. Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR. Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol. 2016;52:1–15.CrossRefGoogle Scholar
  58. Martirosyan A, Schneider Y-J. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health. 2014;11(6):5720–50.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mayer S, Weiss J, McClements DJ. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. J Colloid Interface Sci. 2013;402:122–30.PubMedCrossRefGoogle Scholar
  60. McClements DJ. Design of nano-laminated coatings to control bioavailability of lipophilic food components. J Food Sci. 2010;75(1):R30–42.PubMedCrossRefGoogle Scholar
  61. Nawrocka A, Cieœla J. Influence of silver nanoparticles on food components in wheat. Int Agrophys. 2013;27:49–55.CrossRefGoogle Scholar
  62. Nickols-Richardson SM. Nanotechnology: implications for food and nutrition professionals. J Am Diet Assoc. 2017;107(9):1494–7.CrossRefGoogle Scholar
  63. Oehlke K, Behsnilian D, Mayer-Miebach E, Weidler PG, Greiner R. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity. PLoS One. 2017;12(2):171662.CrossRefGoogle Scholar
  64. Osorio-Tobón JF, Silva EK, Meireles MAA. 3—Nanoencapsulation of flavors and aromas by emerging technologies. In: Grumezescu AM, editor. Encapsulations. London: Academic; 2016. p. 89–126.CrossRefGoogle Scholar
  65. Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia. 2014;2:296–303.Google Scholar
  66. Ozturk B, Argin S, Ozilgen M, McClements DJ. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: whey protein isolate and gum arabic. Food Chem. 2015a;188:256–63.PubMedCrossRefGoogle Scholar
  67. Ozturk B, Argin S, Ozilgen M, McClements DJ. Nanoemulsion delivery systems for oil-soluble vitamins: influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015b;187:499–506.PubMedCrossRefGoogle Scholar
  68. Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci. 2015;16(1):2099–116.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Park BK, Kim D, Jeong S, Moon J, Kim JS. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films. 2007;515(19):7706–11.CrossRefGoogle Scholar
  70. Paszkiewicz M, Tyma M, Jakubus A, Stepnowski P. Recent applications of carbon nanotubes as sorbents for the extraction of pharmaceutical residues. Curr Anal Chem. 2016;12(4):268–79.CrossRefGoogle Scholar
  71. Pimentel-Moral S, Teixeira MC, Fernandes AR, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto EB. Lipid nanocarriers for the loading of polyphenols—a comprehensive review. Adv Colloid Interf Sci. 2018;260:85–94.CrossRefGoogle Scholar
  72. Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 2018;89:1–11.CrossRefGoogle Scholar
  73. Qian C, Decker EA, Xiao H, McClements DJ. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: potential limitations of solid lipid nanoparticles. Food Res Int. 2013;52(1):342–9.CrossRefGoogle Scholar
  74. Ribeiro HS, Chu B-S, Ichikawa S, Nakajima M. Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocoll. 2008;22(1):12–7.CrossRefGoogle Scholar
  75. Saberi AH, Fang Y, McClements DJ. Stabilization of vitamin E-enriched mini-emulsions: influence of organic and aqueous phase compositions. Colloids Surf A Physicochem Eng Asp. 2014;449(1):65–73.CrossRefGoogle Scholar
  76. Sakurai H, Katoh A, Yoshikawa Y. Chemistry and biochemistry of insulin-mimetic vanadium and zinc complexes: trial for treatment of diabetes mellitus. Bull Chem Soc Jpn. 2006;79(11):1645–64.CrossRefGoogle Scholar
  77. Sekhon BS. Food nanotechnology—an overview. Nanotechnol Sci Appl. 2010;3:1–15.PubMedPubMedCentralGoogle Scholar
  78. Shah B, Davidson PM, Zhong Q. Encapsulation of eugenol using Maillard-type conjugates to form transparent and heat stable nanoscale dispersions. LWT-Food Sci Technol. 2012;49(1):139–48.CrossRefGoogle Scholar
  79. Shah BR, Zhang C, Li Y, Li B. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res Int. 2016;89.(Pt 1:399–407.PubMedCrossRefGoogle Scholar
  80. Shariffa YN, Tan TB, Abas F, Mirhosseini H, Nehdi IA, Tan CP. Producing a lycopene nanodispersion: the effects of emulsifiers. Food Bioprod Process. 2016;98:210–6.CrossRefGoogle Scholar
  81. Shariffa YN, Tan TB, Uthumporn U, Abas F, Mirhosseini H, Nehdi IA, Wang YH, Tan CP.Producing a lycopene nanodispersion: formulation development and the effects of high pressure homogenization. Food Res Int. 2017;101:165–72.PubMedCrossRefGoogle Scholar
  82. Silva HD, Cerqueira MA, Souza BWS, Ribeiro C, Avides MC, Quintas MAC, Coimbra JSR, Carneiro-Da-Cunha MG, Vicente AA. Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. J Food Eng. 2011;102(2):130–5.CrossRefGoogle Scholar
  83. Son EJ, Lee JS, Lee M, Vu CHT, Lee H, Won K, Park CB. Self-adhesive graphene oxide-wrapped TiO2 nanoparticles for UV-activated colorimetric oxygen detection. Sensors Actuators B Chem. 2015;213:322–8.CrossRefGoogle Scholar
  84. Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S, Gómez y Gómez Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int J Biol Macromol. 2017;103:409–14.PubMedCrossRefGoogle Scholar
  85. Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009;27(2):82–9.PubMedCrossRefGoogle Scholar
  86. Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q(10) as naked nanocrystals. Int J Nanomedicine. 2012;7:5733–44.PubMedPubMedCentralGoogle Scholar
  87. Surh J, Decker EA, McClements DJ. Utilisation of spontaneous emulsification to fabricate lutein-loaded nanoemulsion-based delivery systems: factors influencing particle size and colour. Int J Food Sci Technol. 2017;52(6):1408–16.CrossRefGoogle Scholar
  88. Tan CP, Nakajima M. β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem. 2005;92(4):661–71.CrossRefGoogle Scholar
  89. Tan TB, Chu WC, Yussof NS, Abas F, Mirhosseini H, Cheah YK, Nehdi IA, Tan CP.Physicochemical, morphological and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms. Food Funct. 2016a;7(4):2043–51.PubMedCrossRefGoogle Scholar
  90. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP. Stability evaluation of lutein nanodispersions prepared via solvent displacement method: the effect of emulsifiers with different stabilizing mechanisms. Food Chem. 2016b;205:155–62.PubMedCrossRefGoogle Scholar
  91. Tang D-W, Yu S-H, Ho Y-C, Huang B-Q, Tsai G-J, Hsieh H-Y, Sung H-W, Mi F-L. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll. 2013;30(1):33–41.CrossRefGoogle Scholar
  92. Teng Z. Food protein-based nanoparticles as bioavailability enhancing encapsulants. University of Maryland, MD, USA; 2015.Google Scholar
  93. Teo A, Lee SJ, Goh KKT, Wolber FM. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem. 2017;221:1269–76.PubMedCrossRefGoogle Scholar
  94. Tsagkaris AS, Tzegkas SG, Danezis GP. Nanomaterials in food packaging: state of the art and analysis. J Food Sci Technol. 2018;55(8):2862–70.PubMedCrossRefGoogle Scholar
  95. Vasile C, Râpă M, Ștefan M, Stan M, Macavei S, Darie-Niță RN, Barbu-Tudoran L, Vodnar DC, Popa EE, Ștefan R, Borodi G, Brebu M. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym Lett. 2017;11(7):531–44.CrossRefGoogle Scholar
  96. Vejdan A, Ojagh SM, Adeli A, Abdollahi M. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT-Food Sci Technol. 2016;71:88–95.CrossRefGoogle Scholar
  97. Walker RM, Gumus CE, Decker EA, McClements DJ. Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. J Food Eng. 2017;211:60–8.CrossRefGoogle Scholar
  98. Wang P, Liu H-J, Mei X-Y, Nakajima M, Yin L-J. Preliminary study into the factors modulating β-carotene micelle formation in dispersions using an in vitro digestion model. Food Hydrocoll. 2012;26(2):427–33.CrossRefGoogle Scholar
  99. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol. 2016;56:21–38.CrossRefGoogle Scholar
  100. Wang T, Bae M, Lee JY, Luo Y. Solid lipid-polymer hybrid nanoparticles prepared with natural biomaterials: a new platform for oral delivery of lipophilic bioactives. Food Hydrocoll. 2018;84:581–92.CrossRefGoogle Scholar
  101. Wissing SA, Müller RH. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci. 2001;23(4):233–43.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Xu J, Yang F, Chen L, Hu Y, Hu Q. Effect of selenium on increasing the antioxidant activity of tea leaves harvested during the early spring tea producing season. J Agric Food Chem. 2003;51(4):1081–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Xu F, Pandya JK, Chung C, McClements DJ, Kinchla AJ. Emulsions as delivery systems for gamma and delta tocotrienols: formation, properties and simulated gastrointestinal fate. Food Res Int. 2018;105:570–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yin L-J, Chu B-S, Kobayashi I, Nakajima M. Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocoll. 2009;23(6):1617–22.CrossRefGoogle Scholar
  105. Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym. 2018;193:19–27.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zambrano-Zaragoza ML, Mercado-Silva E, Del Real L A, Gutiérrez-Cortez E, Cornejo-Villegas MA, Quintanar-Guerrero D. The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innov Food Sci Emerg Technol. 2014;22:188–96.CrossRefGoogle Scholar
  107. Zhou H, Liu G, Zhang J, Sun N, Duan M, Yan Z, Xia Q. Novel lipid-free nanoformulation for improving oral bioavailability of coenzyme Q10. Biomed Res Int. 2014;2014:793–879.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hoda Jafarizadeh-Malmiri
    • 1
  • Zahra Sayyar
    • 1
  • Navideh Anarjan
    • 2
  • Aydin Berenjian
    • 3
  1. 1.Faculty of Chemical Engineering, East AzarbaijanSahand University of TechnologyTabrizIran
  2. 2.Faculty of Chemical Engineering, East AzarbaijanIslamic Azad University Tabriz BranchTabrizIran
  3. 3.Faculty of EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations