Advertisement

Deterministic Group Tractography with Local Uncertainty Quantification

  • Andreas Nugaard HolmEmail author
  • Aasa Feragen
  • Tom Dela Haije
  • Sune Darkner
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

While tractography is routinely used to trace the white-matter connectivity in individual subjects, the population analysis of tractography output is hampered by the difficulty of comparing populations of curves. As a result, analysis is often reduced to population summaries such as TBSS, or made pointwise with similar interaction of remote and nearby tracts. As an easy-to-use alternative, we propose population-wide tractography in MNI space, by simultaneously considering diffusion data from the entire population, registered to MNI. We include voxel-wise quantification of population variability as a measure of uncertainty. The group tractography algorithm is illustrated on a population of subjects from the Human Connectome Project, obtaining robust population estimates of the white matter tracts.

Keywords

Tractography Population analysis Uncertainty quantification 

Notes

Acknowledgements

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

This research was supported by Center for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the Villum Foundation, as well as a grant from the Lundbeck Foundation. TDH was covered by a block stipend from the Villum Foundation.

References

  1. 1.
    Andersson, J.L.R., Jenkinson, M., Smith, S.: Non-linear registration, aka spatial normalisation (2010)Google Scholar
  2. 2.
    Banerjee, A., Dhillon, I.S., Gosh, J., Sra, S.: Clustering on the unit hypersphere using von mises-fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ertan Cetingul, H., Afsari, B., Wright, M.J., Thompson, P.M., Vidal, R.: Group action induced averaging for HARDI processing, pp. 1389–1392. IEEE (2012)Google Scholar
  4. 4.
    Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E.: The Human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)ConnectivityGoogle Scholar
  5. 5.
    Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Routier, A., Poupon, C., Hartmann, A., Ayache, N., Durrleman, S.: Joint Morphometry of fiber tracts and gray matter structures using double diffeomorphisms. In: Information Processing in Medical Imaging: Proceedings of the ... Conference, vol. 24, 275–287 (2015)Google Scholar
  6. 6.
    Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L.: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, 9(Pt 2), pp. 58–66 (2006)CrossRefGoogle Scholar
  7. 7.
    Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.: A random riemannian metric for probabilistic shortest-path tractography. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Vol. 9349, pp. 597–604. Springer International Publishing, Cham (2015)Google Scholar
  8. 8.
    Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)CrossRefGoogle Scholar
  9. 9.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  10. 10.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)CrossRefGoogle Scholar
  11. 11.
    Khatami, M., Schmidt-Wilcke, T., Sundgren, P.C., Abbasloo, A., Schlkopf, B., Schultz, T.: BundleMAP: Anatomically localized classification, regression, and hypothesis testing in diffusion MRI. Pattern Recogn. 63, 593–600 (2017)CrossRefGoogle Scholar
  12. 12.
    Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K.: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, 17, January 2009Google Scholar
  13. 13.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies—a technical review. NMR Biomedicine 15(7–8), 468–480 (2002)CrossRefGoogle Scholar
  14. 14.
    Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path Tractography in DTI using gaussian process ODE solvers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2014. Vol. 8675, pp. 265–272. Springer International Publishing, Cham (2014)Google Scholar
  15. 15.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Zaheer Cader, M., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4), 1487–1505 (2006)CrossRefGoogle Scholar
  16. 16.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Michael Brady, J., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004)CrossRefGoogle Scholar
  17. 17.
    Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1), S173–S186 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhang, F., Weining, W., Ning, L., McAnulty, G., Waber, D., Gagoski, B., Sarill, K., Hamoda, H.M., Song, Y., Cai, W., Rathi, Y., O’Donnell, L.J.: Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. NeuroImage 171, 341–354 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Nugaard Holm
    • 1
    Email author
  • Aasa Feragen
    • 1
  • Tom Dela Haije
    • 1
  • Sune Darkner
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations