Advertisement

Improving Graph-Based Tractography Plausibility Using Microstructure Information

  • Matteo BattocchioEmail author
  • Gabriel Girard
  • Muhamed Barakovic
  • Mario Ocampo
  • Jean-Philippe Thiran
  • Simona Schiavi
  • Alessandro Daducci
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Tractography is a unique tool to study neurological disorders for its ability to infer the major neural tracts from diffusion MRI data, thus allowing the investigation of the connectivity of the brain in-vivo. Tractography has seen a remarkable interest over the years and a large number of algorithms have been proposed. The choice of which method to use in a given application is usually a trade-off between its computational complexity and the quality of the reconstructions. So-called “shortest path” methods represent an interesting option, as they are computationally efficient, robust to noise and their formulation is very flexible. However, they also come with limitations. For instance, the reconstructed streamlines tend to be collapsed and to share part of their path, especially in regions with highly curved fiber bundles. This can introduce voxels with incorrectly high or low streamline density, which does not correspond to the underlying fiber geometry. To mitigate this problem, we propose an iterative procedure that uses microstructure information and provides feedback to the shortest path tractography algorithm about the plausibility of the reconstructions. We evaluated our method on a synthetic phantom and show that the spatial distribution of streamlines is in closer agreement with the ground truth.

Keywords

Diffusion MRI Tractography Graph model Shortest path Microstructure informed tractography Brain connectivity 

References

  1. 1.
    Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62(3), 1732–1749 (2012)CrossRefGoogle Scholar
  2. 2.
    Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.c., Thiran, J.p., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: International Symposium on Magnetic Resonance in Medicine (ISMRM 2014)). Milan, Italy (2014)Google Scholar
  3. 3.
    Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet. Neurol. 7(8), 715–727 (2008)CrossRefGoogle Scholar
  4. 4.
    Cieslak, M., Brennan, T., Meiring, W., Volz, L.J., Greene, C., Asturias, A., Suri, S., Grafton, S.T.: Analytic tractography: a closed-form solution for estimating local white matter connectivity with diffusion MRI. NeuroImage 169, 473–484 (2018)CrossRefGoogle Scholar
  5. 5.
    Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.F., Poupon, C.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (jan 2011)CrossRefGoogle Scholar
  8. 8.
    Iturria-Medina, Y., Canales-Rodríguez, E., Melie-García, L., Valdés-Hernández, P., Martínez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J.: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage (jul, 2007) (2008)Google Scholar
  9. 9.
    Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Plgrini-Issac, M., Benali, H.: Accurate anisotropic fast marching for diffusion-based geodesic tractograph. Int. J. Biomed. Imaging (2008)Google Scholar
  10. 10.
    Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A.: Diffusion MRI fiber tractography of the brain. NMR Biomed., e3785 (2017)Google Scholar
  11. 11.
    Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)CrossRefGoogle Scholar
  12. 12.
    Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans. Med. Imaging 21(5), 505–512 (2002)CrossRefGoogle Scholar
  13. 13.
    Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)CrossRefGoogle Scholar
  14. 14.
    Zalesky, A.: DT-MRI fiber tracking: a shortest paths approach. IEEE Trans. Med. Imaging 27(10), 1458–1471 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Battocchio
    • 1
    Email author
  • Gabriel Girard
    • 2
  • Muhamed Barakovic
    • 2
  • Mario Ocampo
    • 1
  • Jean-Philippe Thiran
    • 2
    • 3
  • Simona Schiavi
    • 1
    • 2
  • Alessandro Daducci
    • 1
    • 2
  1. 1.Computer Science DepartmentUniversity of VeronaVeronaItaly
  2. 2.Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of RadiologyUniversity Hospital Center (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland

Personalised recommendations